Analogues of cliques for oriented coloring
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 373-387.

Voir la notice de l'article provenant de la source Library of Science

We examine subgraphs of oriented graphs in the context of oriented coloring that are analogous to cliques in traditional vertex coloring. Bounds on the sizes of these subgraphs are given for planar, outerplanar, and series-parallel graphs. In particular, the main result of the paper is that a planar graph cannot contain an induced subgraph D with more than 36 vertices such that each pair of vertices in D are joined by a directed path of length at most two.
Keywords: graph coloring, oriented coloring, clique, planar graph
@article{DMGT_2004_24_3_a1,
     author = {Klostermeyer, William and MacGillivray, Gary},
     title = {Analogues of cliques for oriented coloring},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {373--387},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a1/}
}
TY  - JOUR
AU  - Klostermeyer, William
AU  - MacGillivray, Gary
TI  - Analogues of cliques for oriented coloring
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 373
EP  - 387
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a1/
LA  - en
ID  - DMGT_2004_24_3_a1
ER  - 
%0 Journal Article
%A Klostermeyer, William
%A MacGillivray, Gary
%T Analogues of cliques for oriented coloring
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 373-387
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a1/
%G en
%F DMGT_2004_24_3_a1
Klostermeyer, William; MacGillivray, Gary. Analogues of cliques for oriented coloring. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 373-387. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a1/

[1] P. Hell and K. Seyffarth, Largest planar graphs of diameter two and fixed maximum degree, Discrete Math. 111 (1993) 313-322, doi: 10.1016/0012-365X(93)90166-Q.

[2] A. Kostochka, E. Sopena, and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J. Graph Theory 24 (1997) 331-340, doi: 10.1002/(SICI)1097-0118(199704)24:4331::AID-JGT5>3.0.CO;2-P

[3] J. Nesetril, A. Raspaud, and E. Sopena, Colorings and girth of oriented planar graphs, Discrete Math. 165/166 (1997) 519-530, doi: 10.1016/S0012-365X(96)00198-7.

[4] A. Raspaud and E. Sopena, Good and semi-strong colorings of oriented planar graphs, Info. Proc. Letters 51 (1994) 171-174, doi: 10.1016/0020-0190(94)00088-3.

[5] K. Seyffarth, Maximal planar graphs of diameter two, J. Graph Theory 13 (1989) 619-648, doi: 10.1002/jgt.3190130512.

[6] E. Sopena, The chromatic number of oriented graphs, J. Graph Theory 25 (1997) 191-205, doi: 10.1002/(SICI)1097-0118(199707)25:3191::AID-JGT3>3.0.CO;2-G

[7] E. Sopena, Oriented graph coloring, Discrete Math. 229 (2001) 359-369, doi: 10.1016/S0012-365X(00)00216-8.

[8] E. Sopena, There exist oriented planar graphs with oriented chromatic number at least sixteen, Info. Proc. Letters 81 (2002) 309-312, doi: 10.1016/S0020-0190(01)00246-0.

[9] D. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, NJ, 2001) (2nd edition).