Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2004_24_3_a1, author = {Klostermeyer, William and MacGillivray, Gary}, title = {Analogues of cliques for oriented coloring}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {373--387}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a1/} }
TY - JOUR AU - Klostermeyer, William AU - MacGillivray, Gary TI - Analogues of cliques for oriented coloring JO - Discussiones Mathematicae. Graph Theory PY - 2004 SP - 373 EP - 387 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a1/ LA - en ID - DMGT_2004_24_3_a1 ER -
Klostermeyer, William; MacGillivray, Gary. Analogues of cliques for oriented coloring. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 373-387. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a1/
[1] P. Hell and K. Seyffarth, Largest planar graphs of diameter two and fixed maximum degree, Discrete Math. 111 (1993) 313-322, doi: 10.1016/0012-365X(93)90166-Q.
[2] A. Kostochka, E. Sopena, and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J. Graph Theory 24 (1997) 331-340, doi: 10.1002/(SICI)1097-0118(199704)24:4331::AID-JGT5>3.0.CO;2-P
[3] J. Nesetril, A. Raspaud, and E. Sopena, Colorings and girth of oriented planar graphs, Discrete Math. 165/166 (1997) 519-530, doi: 10.1016/S0012-365X(96)00198-7.
[4] A. Raspaud and E. Sopena, Good and semi-strong colorings of oriented planar graphs, Info. Proc. Letters 51 (1994) 171-174, doi: 10.1016/0020-0190(94)00088-3.
[5] K. Seyffarth, Maximal planar graphs of diameter two, J. Graph Theory 13 (1989) 619-648, doi: 10.1002/jgt.3190130512.
[6] E. Sopena, The chromatic number of oriented graphs, J. Graph Theory 25 (1997) 191-205, doi: 10.1002/(SICI)1097-0118(199707)25:3191::AID-JGT3>3.0.CO;2-G
[7] E. Sopena, Oriented graph coloring, Discrete Math. 229 (2001) 359-369, doi: 10.1016/S0012-365X(00)00216-8.
[8] E. Sopena, There exist oriented planar graphs with oriented chromatic number at least sixteen, Info. Proc. Letters 81 (2002) 309-312, doi: 10.1016/S0020-0190(01)00246-0.
[9] D. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, NJ, 2001) (2nd edition).