Vertex-disjoint copies of K¯₄
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 249-262.

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph of order n. Let K¯ₗ be the graph obtained from Kₗ by removing one edge.
Keywords: extremal graph theory, vertex disjoint copy, minimum degree
@article{DMGT_2004_24_2_a7,
     author = {Kawarabayashi, Ken-ichi},
     title = {Vertex-disjoint copies of {K{\textasciimacron}₄}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {249--262},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a7/}
}
TY  - JOUR
AU  - Kawarabayashi, Ken-ichi
TI  - Vertex-disjoint copies of K¯₄
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 249
EP  - 262
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a7/
LA  - en
ID  - DMGT_2004_24_2_a7
ER  - 
%0 Journal Article
%A Kawarabayashi, Ken-ichi
%T Vertex-disjoint copies of K¯₄
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 249-262
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a7/
%G en
%F DMGT_2004_24_2_a7
Kawarabayashi, Ken-ichi. Vertex-disjoint copies of K¯₄. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 249-262. http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a7/

[1] N. Alon and R. Yuster, H-factor in dense graphs, J. Combin. Theory (B) 66 (1996) 269-282, doi: 10.1006/jctb.1996.0020.

[2] G.A. Dirac, On the maximal number of independent triangles in graphs, Abh. Math. Semin. Univ. Hamb. 26 (1963) 78-82, doi: 10.1007/BF02992869.

[3] Y. Egawa and K. Ota, Vertex-Disjoint $K_{1,3}$ in graphs, Discrete Math. 197/198 (1999), 225-246.

[4] Y. Egawa and K. Ota, Vertex-disjoint paths in graphs, Ars Combinatoria 61 (2001) 23-31.

[5] Y. Egawa and K. Ota, $K_{1,3}$-factors in graphs, preprint.

[6] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, Colloq. Math. Soc. János Bolyai 4 (1970) 601-623.

[7] K. Kawarabayashi, K¯₄-factor in a graph, J. Graph Theory 39 (2002) 111-128, doi: 10.1002/jgt.10007.

[8] K. Kawarabayashi, F-factor and vertex disjoint F in a graph, Ars Combinatoria 62 (2002) 183-187.

[9] J. Komlós, Tiling Túran theorems, Combinatorica 20 (2000) 203-218.