Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2004_24_2_a7, author = {Kawarabayashi, Ken-ichi}, title = {Vertex-disjoint copies of {K{\textasciimacron}₄}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {249--262}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a7/} }
Kawarabayashi, Ken-ichi. Vertex-disjoint copies of K¯₄. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 249-262. http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a7/
[1] N. Alon and R. Yuster, H-factor in dense graphs, J. Combin. Theory (B) 66 (1996) 269-282, doi: 10.1006/jctb.1996.0020.
[2] G.A. Dirac, On the maximal number of independent triangles in graphs, Abh. Math. Semin. Univ. Hamb. 26 (1963) 78-82, doi: 10.1007/BF02992869.
[3] Y. Egawa and K. Ota, Vertex-Disjoint $K_{1,3}$ in graphs, Discrete Math. 197/198 (1999), 225-246.
[4] Y. Egawa and K. Ota, Vertex-disjoint paths in graphs, Ars Combinatoria 61 (2001) 23-31.
[5] Y. Egawa and K. Ota, $K_{1,3}$-factors in graphs, preprint.
[6] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, Colloq. Math. Soc. János Bolyai 4 (1970) 601-623.
[7] K. Kawarabayashi, K¯₄-factor in a graph, J. Graph Theory 39 (2002) 111-128, doi: 10.1002/jgt.10007.
[8] K. Kawarabayashi, F-factor and vertex disjoint F in a graph, Ars Combinatoria 62 (2002) 183-187.
[9] J. Komlós, Tiling Túran theorems, Combinatorica 20 (2000) 203-218.