Bounds for index of a modified graph
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 213-221
Cet article a éte moissonné depuis la source Library of Science
If a graph is connected then the largest eigenvalue (i.e., index) generally changes (decreases or increases) if some local modifications are performed. In this paper two types of modifications are considered:
Keywords:
graph, eigenvalue, principal eigenvector
@article{DMGT_2004_24_2_a4,
author = {Zhou, Bo},
title = {Bounds for index of a modified graph},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {213--221},
year = {2004},
volume = {24},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a4/}
}
Zhou, Bo. Bounds for index of a modified graph. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 213-221. http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a4/
[1] D. Cvetković, P. Rowlinson and S. Simić, Eigenspaces of graphs (Cambridge University Press, Cambridge, 1997).
[2] C. Maas, Perturbation results for adjacency spectrum of a graph, Z. Angew. Math. Mech. 67 (1987) 428-430.
[3] P. Rowlinson, On angles and perturbations of graphs, Bull. London Math. Soc. 20 (1988) 193-197, doi: 10.1112/blms/20.3.193.
[4] P. Rowlinson, More on graph perturbations, Bull. London Math. Soc. 22 (1990) 209-216, doi: 10.1112/blms/22.3.209.
[5] W. Weinstein and W. Stenger, Methods of intermediate problems of eigenvalues (Academic Press, New York, 1972).
[6] B. Zhou, The changes in indices of modified graphs, Linear Algebra Appl. 356 (2002) 95-101, doi: 10.1016/S0024-3795(02)00321-X.