Pₘ-saturated bipartite graphs with minimum size
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 197-211.

Voir la notice de l'article provenant de la source Library of Science

A graph G is said to be H-saturated if G is H-free i.e., (G has no subgraph isomorphic to H) and adding any new edge to G creates a copy of H in G. In 1986 L. Kászonyi and Zs. Tuza considered the following problem: for given m and n find the minimum size sat(n;Pₘ) of Pₘ-saturated graph of order n. They gave the number sat(n;Pₘ) for n big enough. We deal with similar problem for bipartite graphs.
Keywords: graph, saturated graph, extremal graph, bipartite graph
@article{DMGT_2004_24_2_a3,
     author = {Dudek, Aneta and Wojda, A.},
     title = {Pₘ-saturated bipartite graphs with minimum size},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {197--211},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a3/}
}
TY  - JOUR
AU  - Dudek, Aneta
AU  - Wojda, A.
TI  - Pₘ-saturated bipartite graphs with minimum size
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 197
EP  - 211
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a3/
LA  - en
ID  - DMGT_2004_24_2_a3
ER  - 
%0 Journal Article
%A Dudek, Aneta
%A Wojda, A.
%T Pₘ-saturated bipartite graphs with minimum size
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 197-211
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a3/
%G en
%F DMGT_2004_24_2_a3
Dudek, Aneta; Wojda, A. Pₘ-saturated bipartite graphs with minimum size. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 197-211. http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a3/

[1] N. Alon, An extremal problem for sets with application to graph theory, J. Combin. Theory Ser. A 40 (1985) 82-89, doi: 10.1016/0097-3165(85)90048-2.

[2] B. Bollobás, Extremal Graph Theory (Academic Press, New York, 1978).

[3] P. Erdös, A. Hajnal, and J.W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (1964) 1107-111, doi: 10.2307/2311408.

[4] A. Gyárfás, C.C. Rousseau, and R.H. Schelp, An extremal problem for path in bipartite graphs, J. Graph Theory 8 (1984) 83-95, doi: 10.1002/jgt.3190080109.

[5] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210, doi: 10.1002/jgt.3190100209.

[6] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Math. Fiz. Lapok 48 (1941) 436-452.