Cyclic decompositions of complete graphs into spanning trees
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 345-353.

Voir la notice de l'article provenant de la source Library of Science

We examine decompositions of complete graphs with an even number of vertices, K_2n, into n isomorphic spanning trees. While methods of such decompositions into symmetric trees have been known, we develop here a more general method based on a new type of vertex labelling, called flexible q-labelling. This labelling is a generalization of labellings introduced by Rosa and Eldergill.
Keywords: graph factorization, graph labelling, spanning trees
@article{DMGT_2004_24_2_a13,
     author = {Froncek, Dalibor},
     title = {Cyclic decompositions of complete graphs into spanning trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {345--353},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a13/}
}
TY  - JOUR
AU  - Froncek, Dalibor
TI  - Cyclic decompositions of complete graphs into spanning trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 345
EP  - 353
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a13/
LA  - en
ID  - DMGT_2004_24_2_a13
ER  - 
%0 Journal Article
%A Froncek, Dalibor
%T Cyclic decompositions of complete graphs into spanning trees
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 345-353
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a13/
%G en
%F DMGT_2004_24_2_a13
Froncek, Dalibor. Cyclic decompositions of complete graphs into spanning trees. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 345-353. http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a13/

[1] J. Bosák, Decompositions of Graphs (Kluwer, Dordrecht, 1990).

[2] P. Eldergill, Decompositions of the complete graph with an even number of vertices (M.Sc. thesis, McMaster University Hamilton, 1997).

[3] D. Froncek and M. Kubesa, Factorizations of complete graphs into spanning trees, Congressus Numerantium 154 (2002) 125-134.

[4] J.A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics DS6 (2001).

[5] G. Ringel, Problem 25, in: Theory of Graphs and its Applications, (Proc. Symp. Smolenice 1963) ed., M. Fiedler (Academia, Prague, 1964) 162.

[6] A. Rosa, Cyclic decompositions of complete graphs (Ph.D. thesis, Slovak Academy of Science, Bratislava, 1965).

[7] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Intl. Symp. Rome 1966), Gordon and Breach, Dunod, Paris (1967) 349-355.