On the domination number of prisms of graphs
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 303-318.

Voir la notice de l'article provenant de la source Library of Science

For a permutation π of the vertex set of a graph G, the graph π G is obtained from two disjoint copies G₁ and G₂ of G by joining each v in G₁ to π(v) in G₂. Hence if π = 1, then πG = K₂×G, the prism of G. Clearly, γ(G) ≤ γ(πG) ≤ 2 γ(G). We study graphs for which γ(K₂×G) = 2γ(G), those for which γ(πG) = 2γ(G) for at least one permutation π of V(G) and those for which γ(πG) = 2γ(G) for each permutation π of V(G).
Keywords: domination, graph products, prisms of graphs
@article{DMGT_2004_24_2_a11,
     author = {Burger, Alewyn and Mynhardt, Christina and Weakley, William},
     title = {On the domination number of prisms of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {303--318},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a11/}
}
TY  - JOUR
AU  - Burger, Alewyn
AU  - Mynhardt, Christina
AU  - Weakley, William
TI  - On the domination number of prisms of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 303
EP  - 318
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a11/
LA  - en
ID  - DMGT_2004_24_2_a11
ER  - 
%0 Journal Article
%A Burger, Alewyn
%A Mynhardt, Christina
%A Weakley, William
%T On the domination number of prisms of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 303-318
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a11/
%G en
%F DMGT_2004_24_2_a11
Burger, Alewyn; Mynhardt, Christina; Weakley, William. On the domination number of prisms of graphs. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 303-318. http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a11/

[1] R. Bertolo, P.R.J. Ostergard and W.D. Weakley, An Updated Table of Binary/Ternary Mixed Covering Codes, J. Combin. Design, to appear.

[2] N.L. Biggs, Algebraic Graph Theory, Second Edition (Cambridge University Press, Cambridge, England, 1996).

[3] N.L. Biggs, Some odd graph theory, Ann. New York Acad. Sci. 319 (1979) 71-81, doi: 10.1111/j.1749-6632.1979.tb32775.x.

[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[5] S.M. Johnson, A new lower bound for coverings by rook domains, Utilitas Mathematica 1 (1972) 121-140.

[6] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ. 38 (Amer. Math. Soc., Providence, RI, 1962).

[7] F.S. Roberts, Applied Combinatorics (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984).

[8] G.J.M. Van Wee, Improved Sphere Bounds On The Covering Radius Of Codes, IEEE Transactions on Information Theory 2 (1988) 237-245, doi: 10.1109/18.2632.