Lower bound on the domination number of a tree
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 165-169.

Voir la notice de l'article provenant de la source Library of Science

>We prove that the domination number γ(T) of a tree T on n ≥ 3 vertices and with n₁ endvertices satisfies inequality γ(T) ≥ (n+2-n₁)/3 and we characterize the extremal graphs.
Keywords: domination number, tree
@article{DMGT_2004_24_2_a0,
     author = {Lema\'nska, Magdalena},
     title = {Lower bound on the domination number of a tree},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {165--169},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a0/}
}
TY  - JOUR
AU  - Lemańska, Magdalena
TI  - Lower bound on the domination number of a tree
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 165
EP  - 169
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a0/
LA  - en
ID  - DMGT_2004_24_2_a0
ER  - 
%0 Journal Article
%A Lemańska, Magdalena
%T Lower bound on the domination number of a tree
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 165-169
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a0/
%G en
%F DMGT_2004_24_2_a0
Lemańska, Magdalena. Lower bound on the domination number of a tree. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 165-169. http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a0/

[1] O. Favaron, A bound on the independent domination number of a tree, Vishwa International Journal of Graph Theory 1 (1992) 19-27.

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan. London, 1976).