A note on minimally 3-connected graphs
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 115-123
Cet article a éte moissonné depuis la source Library of Science
If G is a minimally 3-connected graph and C is a double cover of the set of edges of G by irreducible walks, then |E(G)| ≥ 2| C| - 2.
Keywords:
minimally 3-connected, walk double cover
@article{DMGT_2004_24_1_a9,
author = {Neumann-Lara, V{\'\i}ctor and Rivera-Campo, Eduardo and Urrutia, Jorge},
title = {A note on minimally 3-connected graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {115--123},
year = {2004},
volume = {24},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a9/}
}
TY - JOUR AU - Neumann-Lara, Víctor AU - Rivera-Campo, Eduardo AU - Urrutia, Jorge TI - A note on minimally 3-connected graphs JO - Discussiones Mathematicae. Graph Theory PY - 2004 SP - 115 EP - 123 VL - 24 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a9/ LA - en ID - DMGT_2004_24_1_a9 ER -
Neumann-Lara, Víctor; Rivera-Campo, Eduardo; Urrutia, Jorge. A note on minimally 3-connected graphs. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 115-123. http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a9/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North Holland, 1981).
[2] R. Halin, Untersuchungen über minimale n-fach zusammenhängende Graphen, Math. Ann. 182 (1969) 175-188, doi: 10.1007/BF01350321.
[3] W. Mader, Minimale n-fach zusammenhängende Graphen mit maximaler Kantenzahl, J. Reine Angew. Math. 249 (1971) 201-207, doi: 10.1515/crll.1971.249.201.