Some applications of pq-groups in graph theory
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 109-114.

Voir la notice de l'article provenant de la source Library of Science

We describe some new applications of nonabelian pq-groups to construction problems in Graph Theory. The constructions include the smallest known trivalent graph of girth 17, the smallest known regular graphs of girth five for several degrees, along with four edge colorings of complete graphs that improve lower bounds on classical Ramsey numbers.
Keywords: Ramsey number, edge coloring, cage, degree, girth, Cayley graph
@article{DMGT_2004_24_1_a8,
     author = {Exoo, Geoffrey},
     title = {Some applications of pq-groups in graph theory},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {109--114},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a8/}
}
TY  - JOUR
AU  - Exoo, Geoffrey
TI  - Some applications of pq-groups in graph theory
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 109
EP  - 114
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a8/
LA  - en
ID  - DMGT_2004_24_1_a8
ER  - 
%0 Journal Article
%A Exoo, Geoffrey
%T Some applications of pq-groups in graph theory
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 109-114
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a8/
%G en
%F DMGT_2004_24_1_a8
Exoo, Geoffrey. Some applications of pq-groups in graph theory. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 109-114. http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a8/

[1] G. Exoo, Some New Ramsey Colorings, Electronic J. Combinatorics 5 (1998) #R29.

[2] G. Exoo, A Small Trivalent Graph of Girth 14, to appear.

[3] M. Hall, The Theory of Groups (The Macmillan Company, New York, 1959).

[4] S.P. Radziszowski, Small Ramsey Numbers, Dynamic Survey DS1, Electronic J. Combinatorics 1 (1994) pp. 28.

[5] G. Royle, Cubic Cages, http://www.cs.uwa.edu.au/~gordon/cages/index.html, February, 2001 (Accessed: January 20, 2002).

[6] M. Schönert et al, Groups, Algorithms and Programming, version 4 release 2, Department of Mathematics, University of Western Australia.