Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2003_23_2_a7, author = {Mulder, Henry and Nebesk\'y, Ladislav}, title = {Modular and median signpost systems and their underlying graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {309--324}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a7/} }
TY - JOUR AU - Mulder, Henry AU - Nebeský, Ladislav TI - Modular and median signpost systems and their underlying graphs JO - Discussiones Mathematicae. Graph Theory PY - 2003 SP - 309 EP - 324 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a7/ LA - en ID - DMGT_2003_23_2_a7 ER -
Mulder, Henry; Nebeský, Ladislav. Modular and median signpost systems and their underlying graphs. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 2, pp. 309-324. http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a7/
[1] S.P. Avann, Metric ternary distributive semi-lattices, Proc. Amer. Math. Soc. 11 (1961) 407-414, doi: 10.1090/S0002-9939-1961-0125807-5.
[2] H.-J. Bandelt and H.M. Mulder, Pseudo-modular graphs, Discrete Math. 62 (1986) 245-260, doi: 10.1016/0012-365X(86)90212-8.
[3] W. Imrich, S. Klavžar, and H. M. Mulder, Median graphs and triangle-free graphs, SIAM J. Discrete Math. 12 (1999) 111-118, doi: 10.1137/S0895480197323494.
[4] S. Klavžar and H.M. Mulder, Median graphs: characterizations, location theory and related structures, J. Combin. Math. Combin. Comp. 30 (1999) 103-127.
[5] H.M. Mulder, The interval function of a graph (Math. Centre Tracts 132, Math. Centre, Amsterdam, 1980).
[6] L. Nebeský, Graphic algebras, Comment. Math. Univ. Carolinae 11 (1970) 533-544.
[7] L. Nebeský, Median graphs, Comment. Math. Univ. Carolinae 12 (1971) 317-325.
[8] L. Nebeský, Geodesics and steps in connected graphs, Czechoslovak Math. Journal 47 (122) (1997) 149-161.
[9] L. Nebeský, A tree as a finite nonempty set with a binary operation, Mathematica Bohemica 125 (2000) 455-458.
[10] L. Nebeský, A theorem for an axiomatic approach to metric properties of graphs, Czechoslovak Math. Journal 50 (125) (2000) 121-133.
[11] M. Sholander, Trees, lattices, order, and betweenness, Proc. Amer. Math. Soc. 3 (1952) 369-381, doi: 10.1090/S0002-9939-1952-0048405-5.