Modular and median signpost systems and their underlying graphs
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 2, pp. 309-324.

Voir la notice de l'article provenant de la source Library of Science

The concept of a signpost system on a set is introduced. It is a ternary relation on the set satisfying three fairly natural axioms. Its underlying graph is introduced. When the underlying graph is disconnected some unexpected things may happen. The main focus are signpost systems satisfying some extra axioms. Their underlying graphs have lots of structure: the components are modular graphs or median graphs. Yet another axiom guarantees that the underlying graph is also connected. The main results of this paper concern if-and-only-if characterizations involving signpost systems satisfying additional axioms on the one hand and modular, respectively median graphs on the other hand.
Keywords: signpost system, modular graph, median graph
@article{DMGT_2003_23_2_a7,
     author = {Mulder, Henry and Nebesk\'y, Ladislav},
     title = {Modular and median signpost systems and their underlying graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {309--324},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a7/}
}
TY  - JOUR
AU  - Mulder, Henry
AU  - Nebeský, Ladislav
TI  - Modular and median signpost systems and their underlying graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 309
EP  - 324
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a7/
LA  - en
ID  - DMGT_2003_23_2_a7
ER  - 
%0 Journal Article
%A Mulder, Henry
%A Nebeský, Ladislav
%T Modular and median signpost systems and their underlying graphs
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 309-324
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a7/
%G en
%F DMGT_2003_23_2_a7
Mulder, Henry; Nebeský, Ladislav. Modular and median signpost systems and their underlying graphs. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 2, pp. 309-324. http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a7/

[1] S.P. Avann, Metric ternary distributive semi-lattices, Proc. Amer. Math. Soc. 11 (1961) 407-414, doi: 10.1090/S0002-9939-1961-0125807-5.

[2] H.-J. Bandelt and H.M. Mulder, Pseudo-modular graphs, Discrete Math. 62 (1986) 245-260, doi: 10.1016/0012-365X(86)90212-8.

[3] W. Imrich, S. Klavžar, and H. M. Mulder, Median graphs and triangle-free graphs, SIAM J. Discrete Math. 12 (1999) 111-118, doi: 10.1137/S0895480197323494.

[4] S. Klavžar and H.M. Mulder, Median graphs: characterizations, location theory and related structures, J. Combin. Math. Combin. Comp. 30 (1999) 103-127.

[5] H.M. Mulder, The interval function of a graph (Math. Centre Tracts 132, Math. Centre, Amsterdam, 1980).

[6] L. Nebeský, Graphic algebras, Comment. Math. Univ. Carolinae 11 (1970) 533-544.

[7] L. Nebeský, Median graphs, Comment. Math. Univ. Carolinae 12 (1971) 317-325.

[8] L. Nebeský, Geodesics and steps in connected graphs, Czechoslovak Math. Journal 47 (122) (1997) 149-161.

[9] L. Nebeský, A tree as a finite nonempty set with a binary operation, Mathematica Bohemica 125 (2000) 455-458.

[10] L. Nebeský, A theorem for an axiomatic approach to metric properties of graphs, Czechoslovak Math. Journal 50 (125) (2000) 121-133.

[11] M. Sholander, Trees, lattices, order, and betweenness, Proc. Amer. Math. Soc. 3 (1952) 369-381, doi: 10.1090/S0002-9939-1952-0048405-5.