On the packing of two copies of a caterpillar in its third power
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 105-115.

Voir la notice de l'article provenant de la source Library of Science

H. Kheddouci, J.F. Saclé and M. Woźniak conjectured in 2000 that if a tree T is not a star, then there is an edge-disjoint placement of T into its third power.In this paper, we prove the conjecture for caterpillars.
Keywords: packing, placement, permutation, power of tree, caterpillar
@article{DMGT_2003_23_1_a6,
     author = {Germain, Christian and Kheddouci, Hamamache},
     title = {On the packing of two copies of a caterpillar in its third power},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {105--115},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a6/}
}
TY  - JOUR
AU  - Germain, Christian
AU  - Kheddouci, Hamamache
TI  - On the packing of two copies of a caterpillar in its third power
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 105
EP  - 115
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a6/
LA  - en
ID  - DMGT_2003_23_1_a6
ER  - 
%0 Journal Article
%A Germain, Christian
%A Kheddouci, Hamamache
%T On the packing of two copies of a caterpillar in its third power
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 105-115
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a6/
%G en
%F DMGT_2003_23_1_a6
Germain, Christian; Kheddouci, Hamamache. On the packing of two copies of a caterpillar in its third power. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 105-115. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a6/

[1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).

[2] S. Brandt, Embedding graphs without short cycles in their complements, in: Y. Alavi and A. Schwenk, eds., Graph Theory, Combinatorics, and Applications of Graphs, Vol. 1 (John Wiley and Sons, 1995), 115-121.

[3] D. Burns and S. Schuster, Every (p,p-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308.

[4] S.M. Hedetniemi, S.T. Hedetniemi and P.J. Slater, A note on packing two trees into $K_N$, Ars Combin. 11 (1981) 149-153.

[5] H. Kheddouci, Packing of some trees into their third power, to appear in Appl. Math. Letters.

[6] H. Kheddouci, J.F. Saclé and M. Woźniak, Packing of two copies of a tree into its fourth power, Discrete Math. 213 (2000) 169-178, doi: 10.1016/S0012-365X(99)00177-6.

[7] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory (B) 25 (1978) 295-302, doi: 10.1016/0095-8956(78)90005-9.

[8] H. Wang and N. Sauer, Packing three copies of a tree into a complete graph, Europ. J. Combin. 14 (1993) 137-142, doi: 10.1006/eujc.1993.1018.

[9] M. Woźniak, A note on embedding graphs without small cycles, Colloq. Math. Soc. J. Bolyai 60 (1991) 727-732.

[10] M. Woźniak, Packing of Graphs, Dissertationes Math. CCCLXII (1997) pp. 78.

[11] H.P. Yap, Some Topics in Graph Theory, London Mathematical Society, Lectures Notes Series 108 (Cambridge University Press, Cambridge, 1986).