Vertex-antimagic total labelings of graphs
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 67-83.

Voir la notice de l'article provenant de la source Library of Science

In this paper we introduce a new type of graph labeling for a graph G(V,E) called an (a,d)-vertex-antimagic total labeling. In this labeling we assign to the vertices and edges the consecutive integers from 1 to |V|+|E| and calculate the sum of labels at each vertex, i.e., the vertex label added to the labels on its incident edges. These sums form an arithmetical progression with initial term a and common difference d.
Keywords: super-magic labeling, (a,d)-vertex-antimagic total labeling, (a,d)-antimagic labeling
@article{DMGT_2003_23_1_a4,
     author = {Ba\v{c}a, Martin and MacDougall, James and Bertault, Fran\c{c}ois and Miller, Mirka and Simanjuntak, Rinovia and Slamin, ---},
     title = {Vertex-antimagic total labelings of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {67--83},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a4/}
}
TY  - JOUR
AU  - Bača, Martin
AU  - MacDougall, James
AU  - Bertault, François
AU  - Miller, Mirka
AU  - Simanjuntak, Rinovia
AU  - Slamin, ---
TI  - Vertex-antimagic total labelings of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 67
EP  - 83
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a4/
LA  - en
ID  - DMGT_2003_23_1_a4
ER  - 
%0 Journal Article
%A Bača, Martin
%A MacDougall, James
%A Bertault, François
%A Miller, Mirka
%A Simanjuntak, Rinovia
%A Slamin, ---
%T Vertex-antimagic total labelings of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 67-83
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a4/
%G en
%F DMGT_2003_23_1_a4
Bača, Martin; MacDougall, James; Bertault, François; Miller, Mirka; Simanjuntak, Rinovia; Slamin, ---. Vertex-antimagic total labelings of graphs. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 67-83. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a4/

[1] M. Bača, I. Holländer and Ko-Wei Lih, Two classes of super-magic quartic graphs, JCMCC 13 (1997) 113-120.

[2] M. Bača and I. Holländer, On (a,d)-antimagic prisms, Ars. Combin. 48 (1998) 297-306.

[3] R. Bodendiek and G. Walther, Arithmetisch antimagische graphen, in: K. Wagner and R. Bodendiek, Graphentheorie III, (BI-Wiss. Verl., Mannheim-Leipzig-Wien-Zürich, 1993).

[4] M. Doob, Generalizations of magic graphs, J. Combin. Theory (B) 17 (1974) 205-217, doi: 10.1016/0095-8956(74)90027-6.

[5] J.A. Gallian, A dynamic survey of graph labeling, Electronic. J. Combin. 5 (1998) #DS6.

[6] N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press, Boston-San Diego-New York-London, 1990).

[7] R.H. Jeurissen, Magic graphs, a characterization, Report 8201 (Mathematisch Instituut, Katholieke Universiteit Nijmegen, 1982).

[8] S. Jezný and M. Trenkler, Charaterization of magic graphs, Czechoslovak Math. J. 33 (1983) 435-438.

[9] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461, doi: 10.4153/CMB-1970-084-1.

[10] J.A. MacDougall, M. Miller, Slamin, and W.D. Wallis, Vertex-magic total labelings of graphs, Utilitas Math., to appear.

[11] M. Miller and M. Bača, Antimagic valuations of generalized Petersen graphs, Australasian J. Combin. 22 (2000) 135-139.

[12] J. Sedlácek, Problem 27 in Theory of Graphs and its Applications, Proc. Symp. Smolenice, June 1963, Praha (1964), p. 162.

[13] B.M. Stewart, Supermagic complete graphs, Can. J. Math. 19 (1967) 427-438, doi: 10.4153/CJM-1967-035-9.

[14] W.D. Wallis, E.T. Baskoro, M. Miller and Slamin, Edge-magic total labelings of graphs, Australasian J. Combin. 22 (2000) 177-190.

[15] D.B. West, An Introduction to Graph Theory (Prentice-Hall, 1996).