Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2003_23_1_a4, author = {Ba\v{c}a, Martin and MacDougall, James and Bertault, Fran\c{c}ois and Miller, Mirka and Simanjuntak, Rinovia and Slamin, ---}, title = {Vertex-antimagic total labelings of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {67--83}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a4/} }
TY - JOUR AU - Bača, Martin AU - MacDougall, James AU - Bertault, François AU - Miller, Mirka AU - Simanjuntak, Rinovia AU - Slamin, --- TI - Vertex-antimagic total labelings of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2003 SP - 67 EP - 83 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a4/ LA - en ID - DMGT_2003_23_1_a4 ER -
%0 Journal Article %A Bača, Martin %A MacDougall, James %A Bertault, François %A Miller, Mirka %A Simanjuntak, Rinovia %A Slamin, --- %T Vertex-antimagic total labelings of graphs %J Discussiones Mathematicae. Graph Theory %D 2003 %P 67-83 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a4/ %G en %F DMGT_2003_23_1_a4
Bača, Martin; MacDougall, James; Bertault, François; Miller, Mirka; Simanjuntak, Rinovia; Slamin, ---. Vertex-antimagic total labelings of graphs. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 67-83. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a4/
[1] M. Bača, I. Holländer and Ko-Wei Lih, Two classes of super-magic quartic graphs, JCMCC 13 (1997) 113-120.
[2] M. Bača and I. Holländer, On (a,d)-antimagic prisms, Ars. Combin. 48 (1998) 297-306.
[3] R. Bodendiek and G. Walther, Arithmetisch antimagische graphen, in: K. Wagner and R. Bodendiek, Graphentheorie III, (BI-Wiss. Verl., Mannheim-Leipzig-Wien-Zürich, 1993).
[4] M. Doob, Generalizations of magic graphs, J. Combin. Theory (B) 17 (1974) 205-217, doi: 10.1016/0095-8956(74)90027-6.
[5] J.A. Gallian, A dynamic survey of graph labeling, Electronic. J. Combin. 5 (1998) #DS6.
[6] N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press, Boston-San Diego-New York-London, 1990).
[7] R.H. Jeurissen, Magic graphs, a characterization, Report 8201 (Mathematisch Instituut, Katholieke Universiteit Nijmegen, 1982).
[8] S. Jezný and M. Trenkler, Charaterization of magic graphs, Czechoslovak Math. J. 33 (1983) 435-438.
[9] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461, doi: 10.4153/CMB-1970-084-1.
[10] J.A. MacDougall, M. Miller, Slamin, and W.D. Wallis, Vertex-magic total labelings of graphs, Utilitas Math., to appear.
[11] M. Miller and M. Bača, Antimagic valuations of generalized Petersen graphs, Australasian J. Combin. 22 (2000) 135-139.
[12] J. Sedlácek, Problem 27 in Theory of Graphs and its Applications, Proc. Symp. Smolenice, June 1963, Praha (1964), p. 162.
[13] B.M. Stewart, Supermagic complete graphs, Can. J. Math. 19 (1967) 427-438, doi: 10.4153/CJM-1967-035-9.
[14] W.D. Wallis, E.T. Baskoro, M. Miller and Slamin, Edge-magic total labelings of graphs, Australasian J. Combin. 22 (2000) 177-190.
[15] D.B. West, An Introduction to Graph Theory (Prentice-Hall, 1996).