Decomposition of complete graphs into factors of diameter two and three
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 37-54

Voir la notice de l'article provenant de la source Library of Science

We analyze a minimum number of vertices of a complete graph that can be decomposed into one factor of diameter 2 and k factors of diameter at most 3. We find exact values for k ≤ 4 and the asymptotic value of the ratio of this number and k when k tends to infinity. We also find the asymptotic value of the ratio of the number of vertices of the smallest complete graph that can be decomposed into p factors of diameter 2 and k factors of diameter 3 and number k when p is fixed.
Keywords: decomposition, graph
@article{DMGT_2003_23_1_a2,
     author = {Vukicevi\'c, Damir},
     title = {Decomposition of complete graphs into factors of diameter two and three},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {37--54},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a2/}
}
TY  - JOUR
AU  - Vukicević, Damir
TI  - Decomposition of complete graphs into factors of diameter two and three
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 37
EP  - 54
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a2/
LA  - en
ID  - DMGT_2003_23_1_a2
ER  - 
%0 Journal Article
%A Vukicević, Damir
%T Decomposition of complete graphs into factors of diameter two and three
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 37-54
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a2/
%G en
%F DMGT_2003_23_1_a2
Vukicević, Damir. Decomposition of complete graphs into factors of diameter two and three. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 37-54. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a2/