Perfect connected-dominant graphs
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 159-162

Voir la notice de l'article provenant de la source Library of Science

If D is a dominating set and the induced subgraph G(D) is connected, then D is a connected dominating set. The minimum size of a connected dominating set in G is called connected domination number γ_c(G) of G. A graph G is called a perfect connected-dominant graph if γ(H) = γ_c(H) for each connected induced subgraph H of G.We prove that a graph is a perfect connected-dominant graph if and only if it contains no induced path P₅ and induced cycle C₅.
Keywords: Connected domination, perfect connected-dominant graph
@article{DMGT_2003_23_1_a10,
     author = {Zverovich, Igor},
     title = {Perfect connected-dominant graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {159--162},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a10/}
}
TY  - JOUR
AU  - Zverovich, Igor
TI  - Perfect connected-dominant graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 159
EP  - 162
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a10/
LA  - en
ID  - DMGT_2003_23_1_a10
ER  - 
%0 Journal Article
%A Zverovich, Igor
%T Perfect connected-dominant graphs
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 159-162
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a10/
%G en
%F DMGT_2003_23_1_a10
Zverovich, Igor. Perfect connected-dominant graphs. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 159-162. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a10/