Perfect connected-dominant graphs
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 159-162.

Voir la notice de l'article provenant de la source Library of Science

If D is a dominating set and the induced subgraph G(D) is connected, then D is a connected dominating set. The minimum size of a connected dominating set in G is called connected domination number γ_c(G) of G. A graph G is called a perfect connected-dominant graph if γ(H) = γ_c(H) for each connected induced subgraph H of G.We prove that a graph is a perfect connected-dominant graph if and only if it contains no induced path P₅ and induced cycle C₅.
Keywords: Connected domination, perfect connected-dominant graph
@article{DMGT_2003_23_1_a10,
     author = {Zverovich, Igor},
     title = {Perfect connected-dominant graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {159--162},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a10/}
}
TY  - JOUR
AU  - Zverovich, Igor
TI  - Perfect connected-dominant graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 159
EP  - 162
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a10/
LA  - en
ID  - DMGT_2003_23_1_a10
ER  - 
%0 Journal Article
%A Zverovich, Igor
%T Perfect connected-dominant graphs
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 159-162
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a10/
%G en
%F DMGT_2003_23_1_a10
Zverovich, Igor. Perfect connected-dominant graphs. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 159-162. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a10/

[1] S. Arumugam and J.J. Paulraj, On graphs with equal domination and connected domination numbers, Discrete Math. 206 (1999) 45-49, doi: 10.1016/S0012-365X(98)00390-2.

[2] K. Arvind and R.C. Pandu, Connected domination and Steiner set on weighted permutation graphs, Inform. Process. Lett. 41 (1992) 215-220, doi: 10.1016/0020-0190(92)90183-V.

[3] H. Balakrishnan, A. Rajaram and R.C. Pandu, Connected domination and Steiner set on asteroidal triple-free graphs, Lecture Notes Math. 709 (1993) 131-141.

[4] C. Bo and B. Liu, Some inequalities about connected domination number, Discrete Math. 159 (1996) 241-245, doi: 10.1016/0012-365X(95)00088-E.

[5] J.E. Dunbar, J.W. Grossman, J.H. Hattingh, S.T. Hedetniemi and A.A. McRae, On weakly connected domination in graphs, Discrete Math. 167/168 (1997) 261-269, doi: 10.1016/S0012-365X(96)00233-6.

[6] D.V. Korobitsyn, On the complexity of determining the domination number in monogenic classes of graphs, Discrete Math. 2 (1990) 90-96.

[7] J.J. Paulrau and S. Arumugam, On connected cutfree domination in graphs, Indian J. Pure Appl. Math. 23 (1992) 643-647.

[8] L. Sun, Some results on connected domination of graphs, Math. Appl. 5 (1992) 29-34.

[9] E.S. Wolk, A note on 'The comparability graph of a tree', Proc. Amer. Math. Soc. 16 (1966) 17-20, doi: 10.1090/S0002-9939-1965-0172274-5.

[10] E.S. Wolk, The comparability graph of a tree, Proc. Amer. Math. Soc. 13 (1962) 789-795.