On the structural result on normal plane maps
Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 293-303.

Voir la notice de l'article provenant de la source Library of Science

We prove the structural result on normal plane maps, which applies to the vertex distance colouring of plane maps. The vertex distance-t chromatic number of a plane graph G with maximum degree Δ(G) ≤ D, D ≥ 12 is proved to be upper bounded by 6 + [(2D+12)/(D-2)]((D-1)^(t-1) - 1). This improves a recent bound 6 + [(3D+3)/(D-2)]((D-1)^t-1-1), D ≥ 8 by Jendrol' and Skupień, and the upper bound for distance-2 chromatic number.
Keywords: plane map, distance colouring
@article{DMGT_2002_22_2_a6,
     author = {Madaras, Tom\'as and Marcinov\'a, Andrea},
     title = {On the structural result on normal plane maps},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {293--303},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a6/}
}
TY  - JOUR
AU  - Madaras, Tomás
AU  - Marcinová, Andrea
TI  - On the structural result on normal plane maps
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2002
SP  - 293
EP  - 303
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a6/
LA  - en
ID  - DMGT_2002_22_2_a6
ER  - 
%0 Journal Article
%A Madaras, Tomás
%A Marcinová, Andrea
%T On the structural result on normal plane maps
%J Discussiones Mathematicae. Graph Theory
%D 2002
%P 293-303
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a6/
%G en
%F DMGT_2002_22_2_a6
Madaras, Tomás; Marcinová, Andrea. On the structural result on normal plane maps. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 293-303. http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a6/

[1] P. Baldi, On a generalized family of colourings, Graphs and Combinatorics 6 (1990) 95-110, doi: 10.1007/BF01787722.

[2] O. Borodin, Joint generalization of theorems by Lebesgue and Kotzig, Diskret. Mat. 3 (1991) 24-27 (in Russian).

[3] O. Borodin, Joint colouring of vertices, edges and faces of plane graphs, Metody Diskret. Analiza 47 (1988) 27-37 (in Russian).

[4] M. Fellows, P. Hell and K. Seyffarth, Constructions of dense planar networks, manuscript, 1993.

[5] S. Jendrol' and Z. Skupień, On the vertex/edge distance colourings of planar graphs, Discrete Math. 236 (2001) 167-177.

[6] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. Cas. SAV 5 (1955) 233-237 (in Slovak).

[7] F. Kramer and H. Kramer, Un problème de coloration des sommets d'un graphe, C.R. Acad. Sci. Paris Sér. A-B 268 (1969) A46-A48.

[8] F. Kramer and H. Kramer, On the generalized chromatic number, in: Combinatorics '84 (Bari, Italy) North-Holland Math. Stud. 123 (North-Holland, Amsterdam-New York, 1986) (and Annals Discrete Math. 30, 1986) 275-284.

[9] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. (9) 19 (1940) 27-43.

[10] Z. Skupień, Some maximum multigraphs and edge/vertex distance colourings, Discuss. Math. Graph Theory 15 (1995) 89-106, doi: 10.7151/dmgt.1010.

[11] J. van den Heuvel and S. McGuinness, Colouring the Square of a Planar Graph, preprint, 2001.

[12] G. Wegner, Graphs with given diameter and a coloring problem (Technical report, University of Dortmund, 1977).