A note on domination in bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 229-231.

Voir la notice de l'article provenant de la source Library of Science

DOMINATING SET remains NP-complete even when instances are restricted to bipartite graphs, however, in this case VERTEX COVER is solvable in polynomial time. Consequences to VECTOR DOMINATING SET as a generalization of both are discussed.
Keywords: bipartite graph, domination
@article{DMGT_2002_22_2_a1,
     author = {Gerlach, Tobias and Harant, Jochen},
     title = {A note on domination in bipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {229--231},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a1/}
}
TY  - JOUR
AU  - Gerlach, Tobias
AU  - Harant, Jochen
TI  - A note on domination in bipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2002
SP  - 229
EP  - 231
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a1/
LA  - en
ID  - DMGT_2002_22_2_a1
ER  - 
%0 Journal Article
%A Gerlach, Tobias
%A Harant, Jochen
%T A note on domination in bipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 2002
%P 229-231
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a1/
%G en
%F DMGT_2002_22_2_a1
Gerlach, Tobias; Harant, Jochen. A note on domination in bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 229-231. http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a1/

[1] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability problems in sun-free chordal graphs, SIAM J. Algebraic Discrete Methods 5 (1984) 332-345, doi: 10.1137/0605034.

[2] R. Diestel, Graph Theory (Springer-Verlag, New York, 2000).

[3] M.R. Garey and D.S. Johnson, Computers and Intractability (W.H. Freeman and Company, San Francisco, 1979).

[4] J. Harant, A. Pruchnewski and M. Voigt, On dominating sets and independent sets of graphs, Combinatorics, Probability and Computing 8 (1999) 547-553, doi: 10.1017/S0963548399004034.