Decompositions of multigraphs into parts with two edges
Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 113-121.

Voir la notice de l'article provenant de la source Library of Science

Given a family of multigraphs without isolated vertices, a multigraph M is called -decomposable if M is an edge disjoint union of multigraphs each of which is isomorphic to a member of . We present necessary and sufficient conditions for the existence of such decompositions if comprises two multigraphs from the set consisting of a 2-cycle, a 2-matching and a path with two edges.
Keywords: edge decomposition, multigraph, line graph, 1-factor
@article{DMGT_2002_22_1_a9,
     author = {Ivan\v{c}o, Jaroslav and Meszka, Mariusz and Skupie\'n, Zdzis{\l}aw},
     title = {Decompositions of multigraphs into parts with two edges},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {113--121},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a9/}
}
TY  - JOUR
AU  - Ivančo, Jaroslav
AU  - Meszka, Mariusz
AU  - Skupień, Zdzisław
TI  - Decompositions of multigraphs into parts with two edges
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2002
SP  - 113
EP  - 121
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a9/
LA  - en
ID  - DMGT_2002_22_1_a9
ER  - 
%0 Journal Article
%A Ivančo, Jaroslav
%A Meszka, Mariusz
%A Skupień, Zdzisław
%T Decompositions of multigraphs into parts with two edges
%J Discussiones Mathematicae. Graph Theory
%D 2002
%P 113-121
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a9/
%G en
%F DMGT_2002_22_1_a9
Ivančo, Jaroslav; Meszka, Mariusz; Skupień, Zdzisław. Decompositions of multigraphs into parts with two edges. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 113-121. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a9/

[1] K. Bryś, M. Kouider, Z. Lonc and M. Mahéo, Decomposition of multigraphs, Discuss. Math. Graph Theory 18 (1998) 225-232, doi: 10.7151/dmgt.1078.

[2] Y. Caro, The decomposition of graphs into graphs having two edges, a manuscript.

[3] Y. Caro and J. Schönheim, Decompositions of trees into isomorphic subtrees, Ars Comb. 9 (1980) 119-130.

[4] J. Ivančo, M. Meszka and Z. Skupień; Decomposition of multigraphs into isomorphic graphs with two edges, Ars Comb. 51 (1999) 105-112.

[5] E.B. Yavorski, Representations of oriented graphs and φ-transformations [Russian], in: A. N. Sarkovski, ed., Theoretical and Applied Problems of Differential Equations and Algebra [Russian] (Nauk. Dumka, Kiev, 1978) 247-250.

[6] M. Las Vergnas, A note on matchings in graphs, Cahiers Centre Etudes Rech. Opér. 17 (1975) 257-260.

[7] Z. Skupień; Problem 270 [on 2-edge-decomposable multigraphs], Discrete Math. 164 (1997) 320-321.

[8] D.P. Sumner, Graphs with 1-factors, Proc. Amer. Math. Soc. 42 (1974) 8-12.