A proof of menger's theorem by contraction
Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 111-112.

Voir la notice de l'article provenant de la source Library of Science

A short proof of the classical theorem of Menger concerning the number of disjoint AB-paths of a finite graph for two subsets A and B of its vertex set is given. The main idea of the proof is to contract an edge of the graph.
Keywords: connectivity, disjoint paths, digraph, Menger
@article{DMGT_2002_22_1_a8,
     author = {G\"oring, Frank},
     title = {A proof of menger's theorem by contraction},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {111--112},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a8/}
}
TY  - JOUR
AU  - Göring, Frank
TI  - A proof of menger's theorem by contraction
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2002
SP  - 111
EP  - 112
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a8/
LA  - en
ID  - DMGT_2002_22_1_a8
ER  - 
%0 Journal Article
%A Göring, Frank
%T A proof of menger's theorem by contraction
%J Discussiones Mathematicae. Graph Theory
%D 2002
%P 111-112
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a8/
%G en
%F DMGT_2002_22_1_a8
Göring, Frank. A proof of menger's theorem by contraction. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 111-112. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a8/

[1] T. Böhme, F. Göring and J. Harant, Menger's Theorem, J. Graph Theory 37 (2001) 35-36, doi: 10.1002/jgt.1001.

[2] W. McCuaig, A simple proof of Menger's theorem, J. Graph Theory 8 (1984) 427-429, doi: 10.1002/jgt.3190080311.

[3] R. Diestel, Graph Theory (2nd edition), (Springer-Verlag, New York, 2000).

[4] G.A. Dirac, Short proof of Menger's graph theorem, Mathematika 13 (1966) 42-44, doi: 10.1112/S0025579300004162.

[5] F. Goering, Short Proof of Menger's Theorem, to appear in Discrete Math.

[6] T. Grünwald (later Gallai), Ein neuer Beweis eines Mengerschen Satzes, J. London Math. Soc. 13 (1938) 188-192, doi: 10.1112/jlms/s1-13.3.188.

[7] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115.

[8] J.S. Pym, A proof of Menger's theorem, Monatshefte Math. 73 (1969) 81-88.