Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2002_22_1_a6, author = {Fiala, Jir{\'\i} and Kratochv{\'\i}l, Jan}, title = {Partial covers of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {89--99}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a6/} }
Fiala, Jirí; Kratochvíl, Jan. Partial covers of graphs. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 89-99. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a6/
[1] J. Abello, M.R. Fellows and J.C. Stillwell, On the complexity and combinatorics of covering finite complexes, Australian Journal of Combinatorics 4 (1991) 103-112.
[2] D. Angluin, Local and global properties in networks of processors, in: Proceedings of the 12th ACM Symposium on Theory of Computing (1980) 82-93.
[3] H.L. Bodlaender, The classification of coverings of processor networks, Journal of Parallel Distributed Computing 6 (1989) 166-182, doi: 10.1016/0743-7315(89)90048-8.
[4] N. Biggs, Algebraic Graph Theory (Cambridge University Press, 1974).
[5] G.J. Chang and D. Kuo, The L(2,1)-labeling problem on graphs, SIAM J. Disc. Math. 9 (1996) 309-316, doi: 10.1137/S0895480193245339.
[6] B. Courcelle and Y. Métivier, Coverings and minors: Applications to local computations in graphs, European Journal of Combinatorics 15 (1994) 127-138, doi: 10.1006/eujc.1994.1015.
[7] M. Dyer and C. Greenhill, The complexity of counting graph homomorphisms, in: Proceedings of the Eleventh annual ACM-SIAM Symposium on Discrete Algorithms SODA'00 (San Francisco, 2000).
[8] J. Fiala, Locally injective homomorphism (Doctoral Thesis, Charles University, Praque 2000).
[9] J. Fiala and J. Kratochvíl, Complexity of partial covers of graphs, in: Algorithms and Computation, 12th ISAAC'01, Christchurch, New Zealand, Lecture Notes in Computer Science 2223 (Springer Verlag, 2001) 537-549.
[10] J. Fiala, J. Kratochvíl and T. Kloks, Fixed-parameter complexity of λ-labelings, Discrete Applied Math. 113 (1) (2001) 59-72, doi: 10.1016/S0166-218X(00)00387-5.
[11] J.R. Griggs and R.K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Disc. Math. 5 (1992) 586-595, doi: 10.1137/0405048.
[12] J.L. Gross and T.W. Tucker, Topological Graph Theory (J. Wiley and Sons, 1987).
[13] J.L. Gross and T.W. Tucker, Generating all graph coverings by permutation voltage assignments, Discrete Math. 18 (1977) 273-283, doi: 10.1016/0012-365X(77)90131-5.
[14] P. Hell and J. Nesetril, On the complexity of H-coloring, J. Combin. Theory (B) 48 (1990) 92-110, doi: 10.1016/0095-8956(90)90132-J.
[15] P. Hell and J. Nesetril, The core of a graph, Discrete Math. 109 (1992) 117-126, doi: 10.1016/0012-365X(92)90282-K.
[16] J. van den Heuvel, R.A. Leese and M.A. Shepherd, Graph labeling and radio channel assignment, Journal of Graph Theory 29 (4) (1998) 263-283, doi: 10.1002/(SICI)1097-0118(199812)29:4263::AID-JGT5>3.0.CO;2-V
[17] J. Kratochvíl, A. Proskurowski and J.A. Telle, Covering regular graphs, J. Combin. Theory (B) 71 (1997) 1-16, doi: 10.1006/jctb.1996.1743.
[18] J. Kratochvíl, A. Proskurowski and J.A. Telle, Complexity of graph covering problems, Nordic Journal of Computing 5 (1998) 173-195.
[19] J. Kratochvíl, A. Proskurowski and J.A. Telle, Covering directed multigraphs I. Colored directed multigraphs, in: Graph-Theoretical Concepts in Computer Science, Proceedings 23rd WG '97, Berlin, Lecture Notes in Computer Science 1335 (Springer Verlag, 1997) 242-254.
[20] R.A. Leese, A fresh look at channel assignment in uniform networks, EMC97 Symposium, Zurich, 127-130.
[21] F.T. Leighton, Finite common coverings of graphs, J. Combin. Theory (B) 33 (1982) 231-238, doi: 10.1016/0095-8956(82)90042-9.
[22] W. Massey, Algebraic Topology: An Introduction (Harcourt, Brace and World, 1967).
[23] K.-Ch. Yeh, Labeling graphs with a condition at distance two, Ph.D. Thesis (University of South Carolina, 1990).