Some news about oblique graphs
Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 39-50.

Voir la notice de l'article provenant de la source Library of Science

A k-gon α of a polyhedral graph G(V,E,F) is of type 〈b₁,b₂,...,bₖ〉 if the vertices incident with α in cyclic order have degrees b₁,b₂,...,bₖ and 〈b₁,b₂,...,bₖ〉 is the lexicographic minimum of all such sequences available for α. A polyhedral graph G is oblique if it has no two faces of the same type. Among others it is shown that an oblique graph contains vertices of degree 3.
@article{DMGT_2002_22_1_a4,
     author = {Dobrynin, Andrey and Melnikov, Leonid and Schreyer, Jens and Walther, Hansjoachim},
     title = {Some news about oblique graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {39--50},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a4/}
}
TY  - JOUR
AU  - Dobrynin, Andrey
AU  - Melnikov, Leonid
AU  - Schreyer, Jens
AU  - Walther, Hansjoachim
TI  - Some news about oblique graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2002
SP  - 39
EP  - 50
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a4/
LA  - en
ID  - DMGT_2002_22_1_a4
ER  - 
%0 Journal Article
%A Dobrynin, Andrey
%A Melnikov, Leonid
%A Schreyer, Jens
%A Walther, Hansjoachim
%T Some news about oblique graphs
%J Discussiones Mathematicae. Graph Theory
%D 2002
%P 39-50
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a4/
%G en
%F DMGT_2002_22_1_a4
Dobrynin, Andrey; Melnikov, Leonid; Schreyer, Jens; Walther, Hansjoachim. Some news about oblique graphs. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 39-50. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a4/

[1] O. Borodin, Structural properties of planar maps with the minimum degree 5, Math. Nachr. 158 (1992) 109-117, doi: 10.1002/mana.19921580108.

[2] B. Grünbaum and C.J. Shephard, Spherical tilings with transitivity properties, in: Geometrie (Springer-Verlag, 1982) 65-98.

[3] M. Voigt and H. Walther, Polyhedral graphs with restricted number of faces of the same type, Preprint No. M22/99, Technical University Ilmenau (submitted to Discr. Math.).

[4] H. Walther, Polyhedral graphs with extreme numbers of types of faces, Preprint No. M13/99, Technical University Ilmenau (submitted to Appl. Discr. Math.).