Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2002_22_1_a15, author = {Tk\'a\v{c}, Michal and Voss, Heinz-J\"urgen}, title = {Trestles in polyhedral graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {193--198}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a15/} }
Tkáč, Michal; Voss, Heinz-Jürgen. Trestles in polyhedral graphs. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 193-198. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a15/
[1] D. Barnette, 2-connected spanning subgraphs of planar 3-connected graphs, J. Combin. Theory (B) 61 (1994) 210-216, doi: 10.1006/jctb.1994.1045.
[2] T. Böhme and J. Harant, On hamiltonian cycles in 4- and 5-connected planar triangulations, Discrete Math. 191 (1998) 25-30, doi: 10.1016/S0012-365X(98)00089-2.
[3] T. Böhme, J. Harant and M. Tkáč, On certain Hamiltonian cycles in planar graphs, J. Graph Theory 32 (1999) 81-96, doi: 10.1002/(SICI)1097-0118(199909)32:181::AID-JGT8>3.0.CO;2-9
[4] V. Chvátal, Tough graphs and Hamiltonian circuits, Discrete Math. 5 (1973) 215-228, doi: 10.1016/0012-365X(73)90138-6.
[5] Z. Gao, 2-connected coverings of bounded degree in 3-connected graphs, J. Graph Theory 20 (1995) 327-338, doi: 10.1002/jgt.3190200309.
[6] D.P. Sanders and Y. Zhao, On 2-connected spanning subgraphs with low maximum degree, J. Combin. Theory (B) 74 (1998) 64-86, doi: 10.1006/jctb.1998.1836.
[7] C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7 (1983) 169-176, doi: 10.1002/jgt.3190070205.
[8] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116, doi: 10.1090/S0002-9947-1956-0081471-8.