Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2002_22_1_a11, author = {Kemnitz, Arnfried and Marangio, Massimiliano}, title = {Edge colorings and total colorings of integer distance graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {149--158}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a11/} }
TY - JOUR AU - Kemnitz, Arnfried AU - Marangio, Massimiliano TI - Edge colorings and total colorings of integer distance graphs JO - Discussiones Mathematicae. Graph Theory PY - 2002 SP - 149 EP - 158 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a11/ LA - en ID - DMGT_2002_22_1_a11 ER -
Kemnitz, Arnfried; Marangio, Massimiliano. Edge colorings and total colorings of integer distance graphs. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 149-158. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a11/
[1] M. Behzad, Graphs and their chromatic numbers (Doct. Thesis, Michigan State University, 1965).
[2] B. Bollobás and A.J. Harris, List-colourings of graphs, Graphs and Combinatorics 1 (1985) 115-127, doi: 10.1007/BF02582936.
[3] O.V. Borodin, A.V. Kostochka, and D.R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory (B) 71 (1997) 184-204, doi: 10.1006/jctb.1997.1780.
[4] G.J. Chang, J.-J. Chen, and K.-Ch. Huang, Integral distance graphs, J. Graph Theory 25 (1997) 287-294, doi: 10.1002/(SICI)1097-0118(199708)25:4287::AID-JGT6>3.0.CO;2-G
[5] R.B. Eggleton, Three unsolved problems in graph theory, Ars Combin. 23A (1987) 105-121.
[6] R.B. Eggleton, P. Erdős and D.K. Skilton, Colouring the real line, J. Combin. Theory (B) 39 (1985) 86-100, Erratum: 41 (1986), 139.
[7] R.B. Eggleton, P. Erdős and D.K. Skilton, Colouring prime distance graphs, Graphs and Combinatorics 6 (1990) 17-32, doi: 10.1007/BF01787476.
[8] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, Congressus Numerantium 26 (1979) 125-157.
[9] F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory (B) 63 (1995) 153-158, doi: 10.1006/jctb.1995.1011.
[10] A. Hackmann and A. Kemnitz, List edge colorings of outerplanar graphs, Ars Combin. (to appear).
[11] R. Häggkvist and J.C.M. Janssen, New bounds on the list-chromatic index of the complete graph and other simple graphs, Research report 19, Department of Mathematics (University of Ulmeå, 1993).
[12] A.J. Harris, Problems and conjectures in extremal graph theory (Ph.D. Dissertation, Cambridge Univerity, 1985).
[13] A.J.W. Hilton and H.R. Hind, Total chromatic number of graphs having large maximum degree, Discrete Math. 117 (1993) 127-140, doi: 10.1016/0012-365X(93)90329-R.
[14] T.R. Jensen and Bjarne Toft, Graph coloring problems (Wiley, New York, 1995).
[15] M. Juvan and B. Mohar, List colorings of outerplanar graphs (Manuscript, 1998).
[16] M. Juvan, B. Mohar and R. Skrekovski, List-total colourings of graphs, Combinatorics, Probability and Computing 7 (1998) 181-188, doi: 10.1017/S0963548397003210.
[17] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Discrete Math. 191 (1998) 113-123, doi: 10.1016/S0012-365X(98)00099-5.
[18] A. Kemnitz and M. Marangio, Chromatic numbers of integer distance graphs, Discrete Math. (to appear).
[19] A.V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math. 162 (1996) 199-214, doi: 10.1016/0012-365X(95)00286-6.
[20] D.P. Sanders and Y. Zhao, On total 9-coloring planar graphs of maximum degree seven, J. Graph Theory 31 (1999) 67-73, doi: 10.1002/(SICI)1097-0118(199905)31:167::AID-JGT6>3.0.CO;2-C
[21] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Analiz. 3 (1964) 25-30 (Russian).
[22] M. Voigt, Colouring of distance graphs, Ars Combin. 52 (1999) 3-12.
[23] M. Voigt and H. Walther, Chromatic number of prime distance graphs, Discrete Appl. Math. 51 (1994) 197-209, doi: 10.1016/0166-218X(94)90109-0.
[24] H. Walther, Über eine spezielle Klasse unendlicher Graphen, Graphentheorie II (Klaus Wagner and Rainer Bodendiek, eds.), Bibliographisches Institut Wissenschaftsverlag, 1990, pp. 268-295 (German).
[25] X. Zhu, Distance graphs on the real line (Manuscript, 1996).