Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2001_21_2_a7, author = {Kwa\'snik, Maria and Zwierzchowski, Maciej}, title = {Domination parameters of a graph with deleted special subset of edges}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {229--238}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a7/} }
TY - JOUR AU - Kwaśnik, Maria AU - Zwierzchowski, Maciej TI - Domination parameters of a graph with deleted special subset of edges JO - Discussiones Mathematicae. Graph Theory PY - 2001 SP - 229 EP - 238 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a7/ LA - en ID - DMGT_2001_21_2_a7 ER -
Kwaśnik, Maria; Zwierzchowski, Maciej. Domination parameters of a graph with deleted special subset of edges. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 229-238. http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a7/
[1] R. Diestel, Graph Theory (Springer-Verlag New York, Inc., 1997).
[2] F. Harary and S. Schuster, Interpolation theorems for the independence and domination numbers of spanning trees, Ann. Discrete Math. 41 (1989) 221-228, doi: 10.1016/S0167-5060(08)70462-X.
[3] V.R. Kulli and B. Janakiram, The maximal domination number of a graph, Graph Theory Notes of New York XXXIII (1997) 11-13.
[4] V.R. Kulli and B. Janakiram, The split domination number of a graph, Graph Theory Notes of New York XXXII (1997) 16-19.
[5] M. Kwaśnik and M. Zwierzchowski, Special kinds of domination parameters in graphs with deleted edge, Ars Combin. 55 (2000) 139-146.
[6] T.W. Haynes, L.M. Lawson, R.C. Brigham and R.D. Dutton, Changing and unchanging of the graphical invariants: minimum and maximum degree, maximum clique size, node independence number and edge independence number, Cong. Numer. 72 (1990) 239-252.