On varieties of orgraphs
Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 207-221.

Voir la notice de l'article provenant de la source Library of Science

In this paper we investigate varieties of orgraphs (that is, oriented graphs) as classes of orgraphs closed under isomorphic images, suborgraph identifications and induced suborgraphs, and we study the lattice of varieties of tournament-free orgraphs.
Keywords: orgraph, variety, lattice
@article{DMGT_2001_21_2_a5,
     author = {Haviar, Alfonz and Monoszov\'a, Gabriela},
     title = {On varieties of orgraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {207--221},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a5/}
}
TY  - JOUR
AU  - Haviar, Alfonz
AU  - Monoszová, Gabriela
TI  - On varieties of orgraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2001
SP  - 207
EP  - 221
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a5/
LA  - en
ID  - DMGT_2001_21_2_a5
ER  - 
%0 Journal Article
%A Haviar, Alfonz
%A Monoszová, Gabriela
%T On varieties of orgraphs
%J Discussiones Mathematicae. Graph Theory
%D 2001
%P 207-221
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a5/
%G en
%F DMGT_2001_21_2_a5
Haviar, Alfonz; Monoszová, Gabriela. On varieties of orgraphs. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 207-221. http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a5/

[1] B. Bollobás, Extremal Graph Theory (Academic press, London, New York, San Francisco, 1978).

[2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semani sin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.

[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in graph theory (Vishwa Inter. Publ., Gulbarga, 1991) 41-68.

[4] S. Buris and H.P. Sankappanavar, A Course in Universal Algebra (Springer-Verlag, New York, Heidelberg, Berlin, 1981).

[5] G. Chartrand, O.R. Oellermann, Applied and Algorithmic Graph Theory (Mc Graw-Hill, 1993).

[6] R. Diestel, Graph Theory (Springer-Verlag New York, 1997).

[7] D. Duffus and I. Rival, A structure theory for ordered sets, Discrete Math. 35 (1981) 53-118, doi: 10.1016/0012-365X(81)90201-6.

[8] A. Haviar and R. Nedela, On varieties of graphs, Discuss. Math. Graph Theory 18 (1998) 209-223, doi: 10.7151/dmgt.1077.

[9] A. Haviar, The lattice of varieties of graphs, Acta Univ. M. Belii, ser. Math. 8 (2000) 11-19.

[10] P. Mihók and R. Vasky, Hierarchical Decompositions of Diagrams in Information System Analysis and Lattices of Hereditary Properties of Graphs, Proceedings of ISCM Herlany 1999, ed. A. Has cák, V. Pirc, V. Soltés (University of Technology, Košice, 2000) 126-129.

[11] E.R. Scheinerman, On the structure of hereditary classes of graphs, J. Graph Theory 10 (1986) 545-551.