Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2001_21_2_a2, author = {Mih\'ok, Peter and Skrekovski, Riste}, title = {Gallai's innequality for critical graphs of reducible hereditary properties}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {167--177}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a2/} }
TY - JOUR AU - Mihók, Peter AU - Skrekovski, Riste TI - Gallai's innequality for critical graphs of reducible hereditary properties JO - Discussiones Mathematicae. Graph Theory PY - 2001 SP - 167 EP - 177 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a2/ LA - en ID - DMGT_2001_21_2_a2 ER -
Mihók, Peter; Skrekovski, Riste. Gallai's innequality for critical graphs of reducible hereditary properties. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 167-177. http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a2/
[1] G.A. Dirac, A theorem of R.L. Brooks and a conjecture of H. Hadwiger, Proc. London Math. Soc. 7 (1957) 161-195, doi: 10.1112/plms/s3-7.1.161.
[2] O.V. Borodin, A.V. Kostochka and B. Toft, Variable degeneracy: extensions of Brooks' and Gallai's theorems, Discrete Math. 214 (2000) 101-112, doi: 10.1016/S0012-365X(99)00221-6.
[3] M. Borowiecki, E. Drgas-Burchardt and P. Mihók, Generalized list colourings of graphs, Discuss. Math. Graph Theory 15 (1995) 185-193, doi: 10.7151/dmgt.1016.
[4] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.
[5] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conf. on Combin., Graph Theory and Computing, Congressus Numerantium XXVI (1979) 125-157.
[6] T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hung. Acad. Sci. 8 (1963) 373-395.
[7] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley, New York, 1995).
[8] A.V. Kostochka, M. Stiebitz and B. Wirth, The colour theorems of Brooks and Gallai extended, Discrete Math. 162 (1996) 299-303, doi: 10.1016/0012-365X(95)00294-7.
[9] A.V. Kostochka and M. Stiebitz, On the number of edges in colour-critical graphs and hypergraphs, Combinatorica 20 (2000) 521-530, doi: 10.1007/s004930070005.
[10] A.V. Kostochka and M. Stiebitz, A New Lower Bound on the Number of Edges in Colour-Critical Graphs and Hypergraphs, manuscript, 1999.
[11] M. Krivelevich, On the minimal number of edges in color-critical graphs, Combinatorica 17 (1997) 401-426, doi: 10.1007/BF01215921.
[12] M. Krivelevich, An improved bound on the minimal number of edges in color-critical graphs, Electronic J. Combin. 5 (1998) #R4.
[13] P. Mihók, On the structure of the point arboricity critical graphs, Math. Slovaca 31 (1981) 101-108.
[14] R. Skrekovski, On the critical point-arboricity graphs, manuscript, 1998.
[15] C. Thomassen, Color-critical graphs on a fixed surface, J. Combin. Theory (B) 70 (1997) 67-100, doi: 10.1006/jctb.1996.1722.
[16] V.G. Vizing, Coloring the vertices of a graph in prescribed colours (in Russian), Diskret. Analiz 29 (1976) 3-10.