Gallai's innequality for critical graphs of reducible hereditary properties
Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 167-177
Voir la notice de l'article provenant de la source Library of Science
In this paper Gallai's inequality on the number of edges in critical graphs is generalized for reducible additive induced-hereditary properties of graphs in the following way. Let ₁,₂,...,ₖ (k ≥ 2) be additive induced-hereditary properties, = ₁ ∘ ₂ ∘ ... ∘ₖ and δ = ∑_i=1^k δ(_i). Suppose that G is an -critical graph with n vertices and m edges. Then 2m ≥ δn + (δ-2)/(δ²+2δ-2)*n + (2δ)/(δ²+2δ-2) unless = ² or G = K_δ+1. The generalization of Gallai's inequality for -choice critical graphs is also presented.
Keywords:
additive induced-hereditary property of graphs, reducible property of graphs, critical graph, Gallai's Theorem
@article{DMGT_2001_21_2_a2,
author = {Mih\'ok, Peter and Skrekovski, Riste},
title = {Gallai's innequality for critical graphs of reducible hereditary properties},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {167--177},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a2/}
}
TY - JOUR AU - Mihók, Peter AU - Skrekovski, Riste TI - Gallai's innequality for critical graphs of reducible hereditary properties JO - Discussiones Mathematicae. Graph Theory PY - 2001 SP - 167 EP - 177 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a2/ LA - en ID - DMGT_2001_21_2_a2 ER -
Mihók, Peter; Skrekovski, Riste. Gallai's innequality for critical graphs of reducible hereditary properties. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 167-177. http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a2/