A σ₃ type condition for heavy cycles in weighted graphs
Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 159-166.

Voir la notice de l'article provenant de la source Library of Science

A weighted graph is a graph in which each edge e is assigned a non-negative number w(e), called the weight of e. The weight of a cycle is the sum of the weights of its edges. The weighted degree d^w(v) of a vertex v is the sum of the weights of the edges incident with v. In this paper, we prove the following result: Suppose G is a 2-connected weighted graph which satisfies the following conditions: 1. The weighted degree sum of any three independent vertices is at least m; 2. w(xz) = w(yz) for every vertex z ∈ N(x)∩N(y) with d(x,y) = 2; 3. In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight. Then G contains either a Hamilton cycle or a cycle of weight at least 2m/3. This generalizes a theorem of Fournier and Fraisse on the existence of long cycles in k-connected unweighted graphs in the case k = 2. Our proof of the above result also suggests a new proof to the theorem of Fournier and Fraisse in the case k = 2.
Keywords: weighted graph, (long, heavy, Hamilton) cycle, weighted degree, (weighted) degree sum
@article{DMGT_2001_21_2_a1,
     author = {Zhang, Shenggui and Li, Xueliang and Broersma, Hajo},
     title = {A \ensuremath{\sigma}₃ type condition for heavy cycles in weighted graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {159--166},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a1/}
}
TY  - JOUR
AU  - Zhang, Shenggui
AU  - Li, Xueliang
AU  - Broersma, Hajo
TI  - A σ₃ type condition for heavy cycles in weighted graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2001
SP  - 159
EP  - 166
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a1/
LA  - en
ID  - DMGT_2001_21_2_a1
ER  - 
%0 Journal Article
%A Zhang, Shenggui
%A Li, Xueliang
%A Broersma, Hajo
%T A σ₃ type condition for heavy cycles in weighted graphs
%J Discussiones Mathematicae. Graph Theory
%D 2001
%P 159-166
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a1/
%G en
%F DMGT_2001_21_2_a1
Zhang, Shenggui; Li, Xueliang; Broersma, Hajo. A σ₃ type condition for heavy cycles in weighted graphs. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 159-166. http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a1/

[1] J.A. Bondy, Large cycles in graphs, Discrete Math. 1 (1971) 121-132, doi: 10.1016/0012-365X(71)90019-7.

[2] J.A. Bondy, H.J. Broersma, J. van den Heuvel and H.J. Veldman, Heavy cycles in weighted graphs, to appear in Discuss. Math. Graph Theory, doi: 10.7151/dmgt.1154.

[3] J.A. Bondy and G. Fan, Optimal paths and cycles in weighted graphs, Ann. Discrete Math. 41 (1989) 53-69, doi: 10.1016/S0167-5060(08)70449-7.

[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan London and Elsevier, New York, 1976).

[5] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (3) (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.

[6] I. Fournier and P. Fraisse, On a conjecture of Bondy, J. Combin. Theory (B) 39 (1985) 17-26, doi: 10.1016/0095-8956(85)90035-8.

[7] L. Pósa, On the circuits of finite graphs, Magyar Tud. Math. Kutató Int. Közl. 8 (1963) 355-361.

[8] S. Zhang, X. Li and H.J. Broersma, A Fan type condition for heavy cycles in weighted graphs, to appear in Graphs and Combinatorics.