On (k,l)-kernels of special superdigraphs of Pₘ and Cₘ
Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 1, pp. 95-109.

Voir la notice de l'article provenant de la source Library of Science

The concept of (k,l)-kernels of digraphs was introduced in [2]. Next, H. Galeana-Sanchez [4] proved a sufficient condition for a digraph to have a (k,l)-kernel. The result generalizes the well-known theorem of P. Duchet and it is formulated in terms of symmetric pairs of arcs. Our aim is to give necessary and sufficient conditions for digraphs without symmetric pairs of arcs to have a (k,l)-kernel. We restrict our attention to special superdigraphs of digraphs Pₘ and Cₘ.
Keywords: kernel, semikernel, (k,l)-kernel
@article{DMGT_2001_21_1_a6,
     author = {Kucharska, Magdalena and Kwa\'snik, Maria},
     title = {On (k,l)-kernels of special superdigraphs of {Pₘ} and {Cₘ}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {95--109},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a6/}
}
TY  - JOUR
AU  - Kucharska, Magdalena
AU  - Kwaśnik, Maria
TI  - On (k,l)-kernels of special superdigraphs of Pₘ and Cₘ
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2001
SP  - 95
EP  - 109
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a6/
LA  - en
ID  - DMGT_2001_21_1_a6
ER  - 
%0 Journal Article
%A Kucharska, Magdalena
%A Kwaśnik, Maria
%T On (k,l)-kernels of special superdigraphs of Pₘ and Cₘ
%J Discussiones Mathematicae. Graph Theory
%D 2001
%P 95-109
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a6/
%G en
%F DMGT_2001_21_1_a6
Kucharska, Magdalena; Kwaśnik, Maria. On (k,l)-kernels of special superdigraphs of Pₘ and Cₘ. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 1, pp. 95-109. http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a6/

[1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1976).

[2] M. Kwaśnik, The generalization of Richardson theorem, Discuss. Math. IV (1981) 11-14.

[3] V. Neumann-Lara, Seminúcleas en una digráfica, Anales del Instituto de Matemáticas de la Universidad Nacional Autónoma de México 11 (1971) 55-62.

[4] H. Galeana-Sánchez, On the existence of (k,l)-kernels in digraphs, Discrete Math. 85 (1990) 99-102, doi: 10.1016/0012-365X(90)90167-G.

[5] I. Włoch, Minimal Hamiltonian graphs having a strong (k,k-2)-kei>, Zeszyty Naukowe Politechniki Rzeszowskiej No. 127 (1994) 93-98.