A note on periodicity of the 2-distance operator
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 267-269.

Voir la notice de l'article provenant de la source Library of Science

The paper solves one problem by E. Prisner concerning the 2-distance operator T₂. This is an operator on the class C_f of all finite undirected graphs. If G is a graph from C_f, then T₂(G) is the graph with the same vertex set as G in which two vertices are adjacent if and only if their distance in G is 2. E. Prisner asks whether the periodicity ≥ 3 is possible for T₂. In this paper an affirmative answer is given. A result concerning the periodicity 2 is added.
Keywords: 2-distance operator, complement of a graph
@article{DMGT_2000_20_2_a9,
     author = {Zelinka, Bohdan},
     title = {A note on periodicity of the 2-distance operator},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {267--269},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a9/}
}
TY  - JOUR
AU  - Zelinka, Bohdan
TI  - A note on periodicity of the 2-distance operator
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 267
EP  - 269
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a9/
LA  - en
ID  - DMGT_2000_20_2_a9
ER  - 
%0 Journal Article
%A Zelinka, Bohdan
%T A note on periodicity of the 2-distance operator
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 267-269
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a9/
%G en
%F DMGT_2000_20_2_a9
Zelinka, Bohdan. A note on periodicity of the 2-distance operator. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 267-269. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a9/

[1] F. Harary, C. Hoede and D. Kadlacek, Graph-valued functions related to step graphs, J. Comb. Ing. Syst. Sci. 7 (1982) 231-246.

[2] E. Prisner, Graph Dynamics (Longman House, Burnt Mill, Harlow, 1995).