Sum labellings of cycle hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 255-265
Voir la notice de l'article provenant de la source Library of Science
A hypergraph is a sum hypergraph iff there are a finite S ⊆ IN⁺ and d̲, [d̅] ∈ IN⁺ with 1 d̲ ≤ [d̅] such that is isomorphic to the hypergraph _d̲,[d̅] (S) = (V,) where V = S and = e ⊆ S:d̲ ≤ |e| ≤ [d̅] ∧ ∑_v∈ e v ∈ S. For an arbitrary hypergraph the sum number σ = σ() is defined to be the minimum number of isolated vertices y₁,..., y_σ ∉ V such that ∪ y₁,...,y_σ is a sum hypergraph.
Keywords:
hypergraphs, sum number, vertex labelling
@article{DMGT_2000_20_2_a8,
author = {Teichert, Hanns-Martin},
title = {Sum labellings of cycle hypergraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {255--265},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a8/}
}
Teichert, Hanns-Martin. Sum labellings of cycle hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 255-265. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a8/