Sum labellings of cycle hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 255-265

Voir la notice de l'article provenant de la source Library of Science

A hypergraph is a sum hypergraph iff there are a finite S ⊆ IN⁺ and d̲, [d̅] ∈ IN⁺ with 1 d̲ ≤ [d̅] such that is isomorphic to the hypergraph _d̲,[d̅] (S) = (V,) where V = S and = e ⊆ S:d̲ ≤ |e| ≤ [d̅] ∧ ∑_v∈ e v ∈ S. For an arbitrary hypergraph the sum number σ = σ() is defined to be the minimum number of isolated vertices y₁,..., y_σ ∉ V such that ∪ y₁,...,y_σ is a sum hypergraph.
Keywords: hypergraphs, sum number, vertex labelling
@article{DMGT_2000_20_2_a8,
     author = {Teichert, Hanns-Martin},
     title = {Sum labellings of cycle hypergraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {255--265},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a8/}
}
TY  - JOUR
AU  - Teichert, Hanns-Martin
TI  - Sum labellings of cycle hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 255
EP  - 265
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a8/
LA  - en
ID  - DMGT_2000_20_2_a8
ER  - 
%0 Journal Article
%A Teichert, Hanns-Martin
%T Sum labellings of cycle hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 255-265
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a8/
%G en
%F DMGT_2000_20_2_a8
Teichert, Hanns-Martin. Sum labellings of cycle hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 255-265. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a8/