Sum labellings of cycle hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 255-265.

Voir la notice de l'article provenant de la source Library of Science

A hypergraph is a sum hypergraph iff there are a finite S ⊆ IN⁺ and d̲, [d̅] ∈ IN⁺ with 1 d̲ ≤ [d̅] such that is isomorphic to the hypergraph _d̲,[d̅] (S) = (V,) where V = S and = e ⊆ S:d̲ ≤ |e| ≤ [d̅] ∧ ∑_v∈ e v ∈ S. For an arbitrary hypergraph the sum number σ = σ() is defined to be the minimum number of isolated vertices y₁,..., y_σ ∉ V such that ∪ y₁,...,y_σ is a sum hypergraph.
Keywords: hypergraphs, sum number, vertex labelling
@article{DMGT_2000_20_2_a8,
     author = {Teichert, Hanns-Martin},
     title = {Sum labellings of cycle hypergraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {255--265},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a8/}
}
TY  - JOUR
AU  - Teichert, Hanns-Martin
TI  - Sum labellings of cycle hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 255
EP  - 265
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a8/
LA  - en
ID  - DMGT_2000_20_2_a8
ER  - 
%0 Journal Article
%A Teichert, Hanns-Martin
%T Sum labellings of cycle hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 255-265
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a8/
%G en
%F DMGT_2000_20_2_a8
Teichert, Hanns-Martin. Sum labellings of cycle hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 255-265. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a8/

[1] C. Berge, Hypergraphs, (North Holland, Amsterdam - New York - Oxford - Tokyo, 1989).

[2] J.C. Bermond, A. Germa, M.C. Heydemann and D. Sotteau, Hypergraphes hamiltoniens, Probl. Comb. et Théorie des Graphes, Orsay 1976, Colloques int. CNRS 260 (1978) 39-43.

[3] F. Harary, Sum graphs and difference graphs, Congressus Numerantium 72 (1990) 101-108.

[4] F. Harary, Sum graphs over all the integers, Discrete Math. 124 (1994) 99-105, doi: 10.1016/0012-365X(92)00054-U.

[5] G.Y. Katona and H.A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999) 205-212, doi: 10.1002/(SICI)1097-0118(199903)30:3205::AID-JGT5>3.0.CO;2-O

[6] M. Miller, J.F. Ryan and W.F. Smyth, The Sum Number of the cocktail party graph, Bull. of the ICA 22 (1998) 79-90.

[7] A. Sharary, Integral sum graphs from complete graphs, cycles and wheels, Arab. Gulf J. Scient. Res. 14 (1996) 1-14.

[8] M. Sonntag, Antimagic and supermagic vertex-labelling of hypergraphs, Techn. Univ. Bergakademie Freiberg, Preprint 99-5 (1999).

[9] H.-M. Teichert, Classes of hypergraphs with sum number one, Discuss. Math. Graph Theory 20 (2000) 93-103, doi: 10.7151/dmgt.1109.