Kernels in the closure of coloured digraphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 243-254
Voir la notice de l'article provenant de la source Library of Science
Let D be a digraph with V(D) and A(D) the sets of vertices and arcs of D, respectively. A kernel of D is a set I ⊂ V(D) such that no arc of D joins two vertices of I and for each x ∈ V(D)∖I there is a vertex y ∈ I such that (x,y) ∈ A(D). A digraph is kernel-perfect if every non-empty induced subdigraph of D has a kernel. If D is edge coloured, we define the closure ξ(D) of D the multidigraph with V(ξ(D)) = V(D) and A(ξ(D)) = ⋃_i(u,v)with colour i there exists a monochromatic path of colour i from the vertex u to the vertex v contained in D.
Keywords:
kernel, closure, tournament
@article{DMGT_2000_20_2_a7,
author = {Galeana-S\'anchez, Hortensia and Garc{\'\i}a-Ruvalcaba, Jos\'e},
title = {Kernels in the closure of coloured digraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {243--254},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a7/}
}
TY - JOUR AU - Galeana-Sánchez, Hortensia AU - García-Ruvalcaba, José TI - Kernels in the closure of coloured digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2000 SP - 243 EP - 254 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a7/ LA - en ID - DMGT_2000_20_2_a7 ER -
Galeana-Sánchez, Hortensia; García-Ruvalcaba, José. Kernels in the closure of coloured digraphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 243-254. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a7/