Kernels in the closure of coloured digraphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 243-254.

Voir la notice de l'article provenant de la source Library of Science

Let D be a digraph with V(D) and A(D) the sets of vertices and arcs of D, respectively. A kernel of D is a set I ⊂ V(D) such that no arc of D joins two vertices of I and for each x ∈ V(D)∖I there is a vertex y ∈ I such that (x,y) ∈ A(D). A digraph is kernel-perfect if every non-empty induced subdigraph of D has a kernel. If D is edge coloured, we define the closure ξ(D) of D the multidigraph with V(ξ(D)) = V(D) and A(ξ(D)) = ⋃_i(u,v)with colour i there exists a monochromatic path of colour i from the vertex u to the vertex v contained in D.
Keywords: kernel, closure, tournament
@article{DMGT_2000_20_2_a7,
     author = {Galeana-S\'anchez, Hortensia and Garc{\'\i}a-Ruvalcaba, Jos\'e},
     title = {Kernels in the closure of coloured digraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {243--254},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a7/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
AU  - García-Ruvalcaba, José
TI  - Kernels in the closure of coloured digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 243
EP  - 254
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a7/
LA  - en
ID  - DMGT_2000_20_2_a7
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%A García-Ruvalcaba, José
%T Kernels in the closure of coloured digraphs
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 243-254
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a7/
%G en
%F DMGT_2000_20_2_a7
Galeana-Sánchez, Hortensia; García-Ruvalcaba, José. Kernels in the closure of coloured digraphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 243-254. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a7/

[1] C. Berge and P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990) 27-31, doi: 10.1016/0012-365X(90)90346-J.

[2] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112, doi: 10.1016/0012-365X(95)00036-V.

[3] H. Galeana-Sánchez, Kernels in edge coloured digraphs, Discrete Math. 184 (1998) 87-99, doi: 10.1016/S0012-365X(97)00162-3.

[4] H. Galeana-Sánchez and J.J. García-Ruvalcaba, On graph all of whose {C₃, T₃}-free arc colorations are kernel-perfect, submitted.

[5] Shen Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108-111, doi: 10.1016/0095-8956(88)90059-7.

[6] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275, doi: 10.1016/0095-8956(82)90047-8.