Dichromatic number, circulant tournaments and Zykov sums of digraphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 197-207
Voir la notice de l'article provenant de la source Library of Science
The dichromatic number dc(D) of a digraph D is the smallest number of colours needed to colour the vertices of D so that no monochromatic directed cycle is created. In this paper the problem of computing the dichromatic number of a Zykov-sum of digraphs over a digraph D is reduced to that of computing a multicovering number of an hypergraph H₁(D) associated to D in a natural way. This result allows us to construct an infinite family of pairwise non isomorphic vertex-critical k-dichromatic circulant tournaments for every k ≥ 3, k ≠ 7.
Keywords:
digraphs, dichromatic number, vertex-critical, Zykov sums, tournaments, circulant, covering numbers in hypergraphs
@article{DMGT_2000_20_2_a3,
author = {Neumann-Lara, V{\'\i}ctor},
title = {Dichromatic number, circulant tournaments and {Zykov} sums of digraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {197--207},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a3/}
}
TY - JOUR AU - Neumann-Lara, Víctor TI - Dichromatic number, circulant tournaments and Zykov sums of digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2000 SP - 197 EP - 207 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a3/ LA - en ID - DMGT_2000_20_2_a3 ER -
Neumann-Lara, Víctor. Dichromatic number, circulant tournaments and Zykov sums of digraphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 197-207. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a3/