Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2000_20_2_a2, author = {Knor, Martin and Niepel, L'udov{\'\i}t}, title = {Connectivity of path graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {181--195}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a2/} }
Knor, Martin; Niepel, L'udovít. Connectivity of path graphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 181-195. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a2/
[1] A. Belan and P. Jurica, Diameter in path graphs, Acta Math. Univ. Comenian. LXVIII (1999) 111-126.
[2] H.J. Broersma and C. Hoede, Path graphs, J. Graph Theory 13 (1989) 427-444, doi: 10.1002/jgt.3190130406.
[3] M. Knor and L'. Niepel, Path, trail and walk graphs, Acta Math. Univ. Comenian. LXVIII (1999) 253-256.
[4] M. Knor and L'. Niepel, Distances in iterated path graphs, Discrete Math. (to appear).
[5] M. Knor and L'. Niepel, Centers in path graphs, (submitted).
[6] M. Knor and L'. Niepel, Graphs isomorphic to their path graphs, (submitted).
[7] H. Li and Y. Lin, On the characterization of path graphs, J. Graph Theory 17 (1993) 463-466, doi: 10.1002/jgt.3190170403.
[8] X. Li and B. Zhao, Isomorphisms of P₄-graphs, Australasian J. Combin. 15 (1997) 135-143.
[9] X. Yu, Trees and unicyclic graphs with Hamiltonian path graphs, J. Graph Theory 14 (1990) 705-708, doi: 10.1002/jgt.3190140610.