Connectivity of path graphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 181-195.

Voir la notice de l'article provenant de la source Library of Science

We prove a necessary and sufficient condition under which a connected graph has a connected P₃-path graph. Moreover, an analogous condition for connectivity of the Pₖ-path graph of a connected graph which does not contain a cycle of length smaller than k+1 is derived.
Keywords: connectivity, path graph, cycle
@article{DMGT_2000_20_2_a2,
     author = {Knor, Martin and Niepel, L'udov{\'\i}t},
     title = {Connectivity of path graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {181--195},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a2/}
}
TY  - JOUR
AU  - Knor, Martin
AU  - Niepel, L'udovít
TI  - Connectivity of path graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 181
EP  - 195
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a2/
LA  - en
ID  - DMGT_2000_20_2_a2
ER  - 
%0 Journal Article
%A Knor, Martin
%A Niepel, L'udovít
%T Connectivity of path graphs
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 181-195
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a2/
%G en
%F DMGT_2000_20_2_a2
Knor, Martin; Niepel, L'udovít. Connectivity of path graphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 181-195. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a2/

[1] A. Belan and P. Jurica, Diameter in path graphs, Acta Math. Univ. Comenian. LXVIII (1999) 111-126.

[2] H.J. Broersma and C. Hoede, Path graphs, J. Graph Theory 13 (1989) 427-444, doi: 10.1002/jgt.3190130406.

[3] M. Knor and L'. Niepel, Path, trail and walk graphs, Acta Math. Univ. Comenian. LXVIII (1999) 253-256.

[4] M. Knor and L'. Niepel, Distances in iterated path graphs, Discrete Math. (to appear).

[5] M. Knor and L'. Niepel, Centers in path graphs, (submitted).

[6] M. Knor and L'. Niepel, Graphs isomorphic to their path graphs, (submitted).

[7] H. Li and Y. Lin, On the characterization of path graphs, J. Graph Theory 17 (1993) 463-466, doi: 10.1002/jgt.3190170403.

[8] X. Li and B. Zhao, Isomorphisms of P₄-graphs, Australasian J. Combin. 15 (1997) 135-143.

[9] X. Yu, Trees and unicyclic graphs with Hamiltonian path graphs, J. Graph Theory 14 (1990) 705-708, doi: 10.1002/jgt.3190140610.