The decomposability of additive hereditary properties of graphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 281-291
Voir la notice de l'article provenant de la source Library of Science
An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. If ₁,...,ₙ are properties of graphs, then a (₁,...,ₙ)-decomposition of a graph G is a partition E₁,...,Eₙ of E(G) such that G[E_i], the subgraph of G induced by E_i, is in _i, for i = 1,...,n. We define ₁ ⊕...⊕ ₙ as the property G ∈ : G has a (₁,...,ₙ)-decomposition. A property is said to be decomposable if there exist non-trivial hereditary properties ₁ and ₂ such that = ₁⊕ ₂. We study the decomposability of the well-known properties of graphs ₖ, ₖ, ₖ, ₖ, ₖ, ₖ and ^p.
Keywords:
property of graphs, additive, hereditary, decomposable property of graphs
@article{DMGT_2000_20_2_a11,
author = {Broere, Izak and Dorfling, Michael},
title = {The decomposability of additive hereditary properties of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {281--291},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a11/}
}
TY - JOUR AU - Broere, Izak AU - Dorfling, Michael TI - The decomposability of additive hereditary properties of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2000 SP - 281 EP - 291 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a11/ LA - en ID - DMGT_2000_20_2_a11 ER -
Broere, Izak; Dorfling, Michael. The decomposability of additive hereditary properties of graphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 281-291. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a11/