The decomposability of additive hereditary properties of graphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 281-291.

Voir la notice de l'article provenant de la source Library of Science

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. If ₁,...,ₙ are properties of graphs, then a (₁,...,ₙ)-decomposition of a graph G is a partition E₁,...,Eₙ of E(G) such that G[E_i], the subgraph of G induced by E_i, is in _i, for i = 1,...,n. We define ₁ ⊕...⊕ ₙ as the property G ∈ : G has a (₁,...,ₙ)-decomposition. A property is said to be decomposable if there exist non-trivial hereditary properties ₁ and ₂ such that = ₁⊕ ₂. We study the decomposability of the well-known properties of graphs ₖ, ₖ, ₖ, ₖ, ₖ, ₖ and ^p.
Keywords: property of graphs, additive, hereditary, decomposable property of graphs
@article{DMGT_2000_20_2_a11,
     author = {Broere, Izak and Dorfling, Michael},
     title = {The decomposability of additive hereditary properties of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {281--291},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a11/}
}
TY  - JOUR
AU  - Broere, Izak
AU  - Dorfling, Michael
TI  - The decomposability of additive hereditary properties of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 281
EP  - 291
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a11/
LA  - en
ID  - DMGT_2000_20_2_a11
ER  - 
%0 Journal Article
%A Broere, Izak
%A Dorfling, Michael
%T The decomposability of additive hereditary properties of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 281-291
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a11/
%G en
%F DMGT_2000_20_2_a11
Broere, Izak; Dorfling, Michael. The decomposability of additive hereditary properties of graphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 281-291. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a11/

[1] M. Borowiecki and M. Hałuszczak, Decompositions of some classes of graphs, Report No. IM-3-99, Institute of Mathematics, Technical University of Zielona Góra, 1999.

[2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.

[3] S.A. Burr, M.S. Jacobson, P. Mihók and G. Semanišin, Generalized Ramsey theory and decomposable properties of graphs, Discuss. Math. Graph Theory 19 (1999) 199-217, doi: 10.7151/dmgt.1095.

[4] M. Hałuszczak and P. Vateha, On the completeness of decomposable properties of graphs, Discuss. Math. Graph Theory 19 (1999) 229-236, doi: 10.7151/dmgt.1097.

[5] P. Mihók, G. Semanišin and R. Vasky, Additive and hereditary properties of graphs are uniquely factorizable into irreducible factors, J. Graph Theory 33 (2000) 44-53, doi: 10.1002/(SICI)1097-0118(200001)33:144::AID-JGT5>3.0.CO;2-O

[6] J. Nesetril and V. Rödl, Simple proof of the existence of restricted Ramsey graphs by means of a partite construction, Combinatorica 1 (1981) 199-202, doi: 10.1007/BF02579274.