Note on the weight of paths in plane triangulations of minimum degree 4 and 5
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 173-180.

Voir la notice de l'article provenant de la source Library of Science

The weight of a path in a graph is defined to be the sum of degrees of its vertices in entire graph. It is proved that each plane triangulation of minimum degree 5 contains a path P₅ on 5 vertices of weight at most 29, the bound being precise, and each plane triangulation of minimum degree 4 contains a path P₄ on 4 vertices of weight at most 31.
Keywords: weight of path, plane graph, triangulation
@article{DMGT_2000_20_2_a1,
     author = {Madaras, Tom\'as},
     title = {Note on the weight of paths in plane triangulations of minimum degree 4 and 5},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {173--180},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a1/}
}
TY  - JOUR
AU  - Madaras, Tomás
TI  - Note on the weight of paths in plane triangulations of minimum degree 4 and 5
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 173
EP  - 180
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a1/
LA  - en
ID  - DMGT_2000_20_2_a1
ER  - 
%0 Journal Article
%A Madaras, Tomás
%T Note on the weight of paths in plane triangulations of minimum degree 4 and 5
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 173-180
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a1/
%G en
%F DMGT_2000_20_2_a1
Madaras, Tomás. Note on the weight of paths in plane triangulations of minimum degree 4 and 5. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 173-180. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a1/

[1] K. Ando, S. Iwasaki and A. Kaneko, Every 3-connected planar graph has a connected subgraph with small degree sum, Annual Meeting of the Mathematical Society of Japan, 1993 (in Japanese).

[2] O.V. Borodin, Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs, Mat. Zametki 46 (5) (1989) 9-12.

[3] O.V. Borodin, Minimal vertex degree sum of a 3-path in plane maps, Discuss. Math. Graph Theory 17 (1997) 279-284, doi: 10.7151/dmgt.1055.

[4] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159-164, doi: 10.7151/dmgt.1071.

[5] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs and Combinatorics 13 (1997) 245-250.

[6] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar graphs, Discrete Math. 191 (1998) 83-90, doi: 10.1016/S0012-365X(98)00095-8.

[7] I. Fabrici, E. Hexel, S. Jendrol' and H. Walther, On vertex-degree restricted paths in polyhedral graphs, Discrete Math. 212 (2000) 61-73, doi: 10.1016/S0012-365X(99)00209-5.

[8] P. Franklin, The four color problem, Amer. J. Math. 44 (1922) 225-236, doi: 10.2307/2370527.

[9] S. Jendrol' and T. Madaras, On light subgraphs in plane graphs of minimum degree five, Discuss. Math. Graph Theory 16 (1996) 207-217, doi: 10.7151/dmgt.1035.

[10] E. Jucovic, Convex polytopes (Veda, Bratislava, 1981).

[11] T. Madaras, Note on weights of paths in polyhedral graphs, Discrete Math. 203 (1999) 267-269, doi: 10.1016/S0012-365X(99)00052-7.

[12] B. Mohar, Light paths in 4-connected graphs in the plane and other surfaces, J. Graph Theory 34 (2000) 170-179, doi: 10.1002/1097-0118(200006)34:2170::AID-JGT6>3.0.CO;2-P

[13] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426, doi: 10.1007/BF01444968.