2-factors in claw-free graphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 165-172

Voir la notice de l'article provenant de la source Library of Science

We consider the question of the range of the number of cycles possible in a 2-factor of a 2-connected claw-free graph with sufficiently high minimum degree. (By claw-free we mean the graph has no induced K_1,3.) In particular, we show that for such a graph G of order n ≥ 51 with δ(G) ≥ (n-2)/3, G contains a 2-factor with exactly k cycles, for 1 ≤ k ≤ (n-24)/3. We also show that this result is sharp in the sense that if we lower δ(G), we cannot obtain the full range of values for k.
Keywords: claw-free, forbidden subgraphs, 2-factors, cycles
@article{DMGT_2000_20_2_a0,
     author = {Chen, Guantao and Faudree, Jill and Gould, Ronald and Saito, Akira},
     title = {2-factors in claw-free graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {165--172},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a0/}
}
TY  - JOUR
AU  - Chen, Guantao
AU  - Faudree, Jill
AU  - Gould, Ronald
AU  - Saito, Akira
TI  - 2-factors in claw-free graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 165
EP  - 172
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a0/
LA  - en
ID  - DMGT_2000_20_2_a0
ER  - 
%0 Journal Article
%A Chen, Guantao
%A Faudree, Jill
%A Gould, Ronald
%A Saito, Akira
%T 2-factors in claw-free graphs
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 165-172
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a0/
%G en
%F DMGT_2000_20_2_a0
Chen, Guantao; Faudree, Jill; Gould, Ronald; Saito, Akira. 2-factors in claw-free graphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 165-172. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a0/