Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2000_20_2_a0, author = {Chen, Guantao and Faudree, Jill and Gould, Ronald and Saito, Akira}, title = {2-factors in claw-free graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {165--172}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a0/} }
TY - JOUR AU - Chen, Guantao AU - Faudree, Jill AU - Gould, Ronald AU - Saito, Akira TI - 2-factors in claw-free graphs JO - Discussiones Mathematicae. Graph Theory PY - 2000 SP - 165 EP - 172 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a0/ LA - en ID - DMGT_2000_20_2_a0 ER -
Chen, Guantao; Faudree, Jill; Gould, Ronald; Saito, Akira. 2-factors in claw-free graphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 165-172. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a0/
[1] J.A. Bondy, Pancyclic Graphs I, J. Combin. Theory (B) 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.
[2] S. Brandt, G. Chen, R.J. Faudree, R.J. Gould and L. Lesniak, On the Number of Cycles in a 2-Factor, J. Graph Theory, 24 (1997) 165-173, doi: 10.1002/(SICI)1097-0118(199702)24:2165::AID-JGT4>3.3.CO;2-A
[3] G. Chartrand and L. Lesniak, Graphs Digraphs (Chapman and Hall, London, 3rd edition, 1996).
[4] R.J. Gould, Updating the Hamiltonian Problem - A Survey, J. Graph Theory 15 (1991) 121-157, doi: 10.1002/jgt.3190150204.
[5] M.M. Matthews and D.P. Sumner, Longest Paths and Cycles in $K_{1,3}$-Free Graphs, J. Graph Theory 9 (1985) 269-277, doi: 10.1002/jgt.3190090208.
[6] O. Ore, Hamiltonian Connected Graphs, J. Math. Pures. Appl. 42 (1963) 21-27.
[7] H. Li and C. Virlouvet, Neighborhood Conditions for Claw-free Hamiltonian Graphs, Ars Combinatoria 29 (A) (1990) 109-116.