2-factors in claw-free graphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 165-172.

Voir la notice de l'article provenant de la source Library of Science

We consider the question of the range of the number of cycles possible in a 2-factor of a 2-connected claw-free graph with sufficiently high minimum degree. (By claw-free we mean the graph has no induced K_1,3.) In particular, we show that for such a graph G of order n ≥ 51 with δ(G) ≥ (n-2)/3, G contains a 2-factor with exactly k cycles, for 1 ≤ k ≤ (n-24)/3. We also show that this result is sharp in the sense that if we lower δ(G), we cannot obtain the full range of values for k.
Keywords: claw-free, forbidden subgraphs, 2-factors, cycles
@article{DMGT_2000_20_2_a0,
     author = {Chen, Guantao and Faudree, Jill and Gould, Ronald and Saito, Akira},
     title = {2-factors in claw-free graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {165--172},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a0/}
}
TY  - JOUR
AU  - Chen, Guantao
AU  - Faudree, Jill
AU  - Gould, Ronald
AU  - Saito, Akira
TI  - 2-factors in claw-free graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 165
EP  - 172
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a0/
LA  - en
ID  - DMGT_2000_20_2_a0
ER  - 
%0 Journal Article
%A Chen, Guantao
%A Faudree, Jill
%A Gould, Ronald
%A Saito, Akira
%T 2-factors in claw-free graphs
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 165-172
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a0/
%G en
%F DMGT_2000_20_2_a0
Chen, Guantao; Faudree, Jill; Gould, Ronald; Saito, Akira. 2-factors in claw-free graphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 165-172. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a0/

[1] J.A. Bondy, Pancyclic Graphs I, J. Combin. Theory (B) 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.

[2] S. Brandt, G. Chen, R.J. Faudree, R.J. Gould and L. Lesniak, On the Number of Cycles in a 2-Factor, J. Graph Theory, 24 (1997) 165-173, doi: 10.1002/(SICI)1097-0118(199702)24:2165::AID-JGT4>3.3.CO;2-A

[3] G. Chartrand and L. Lesniak, Graphs Digraphs (Chapman and Hall, London, 3rd edition, 1996).

[4] R.J. Gould, Updating the Hamiltonian Problem - A Survey, J. Graph Theory 15 (1991) 121-157, doi: 10.1002/jgt.3190150204.

[5] M.M. Matthews and D.P. Sumner, Longest Paths and Cycles in $K_{1,3}$-Free Graphs, J. Graph Theory 9 (1985) 269-277, doi: 10.1002/jgt.3190090208.

[6] O. Ore, Hamiltonian Connected Graphs, J. Math. Pures. Appl. 42 (1963) 21-27.

[7] H. Li and C. Virlouvet, Neighborhood Conditions for Claw-free Hamiltonian Graphs, Ars Combinatoria 29 (A) (1990) 109-116.