2-factors in claw-free graphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 165-172
Voir la notice de l'article provenant de la source Library of Science
We consider the question of the range of the number of cycles possible in a 2-factor of a 2-connected claw-free graph with sufficiently high minimum degree. (By claw-free we mean the graph has no induced K_1,3.) In particular, we show that for such a graph G of order n ≥ 51 with δ(G) ≥ (n-2)/3, G contains a 2-factor with exactly k cycles, for 1 ≤ k ≤ (n-24)/3. We also show that this result is sharp in the sense that if we lower δ(G), we cannot obtain the full range of values for k.
Keywords:
claw-free, forbidden subgraphs, 2-factors, cycles
@article{DMGT_2000_20_2_a0,
author = {Chen, Guantao and Faudree, Jill and Gould, Ronald and Saito, Akira},
title = {2-factors in claw-free graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {165--172},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a0/}
}
TY - JOUR AU - Chen, Guantao AU - Faudree, Jill AU - Gould, Ronald AU - Saito, Akira TI - 2-factors in claw-free graphs JO - Discussiones Mathematicae. Graph Theory PY - 2000 SP - 165 EP - 172 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a0/ LA - en ID - DMGT_2000_20_2_a0 ER -
Chen, Guantao; Faudree, Jill; Gould, Ronald; Saito, Akira. 2-factors in claw-free graphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 165-172. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a0/