A class of tight circulant tournaments
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 109-128.

Voir la notice de l'article provenant de la source Library of Science

A tournament is said to be tight whenever every 3-colouring of its vertices using the 3 colours, leaves at least one cyclic triangle all whose vertices have different colours. In this paper, we extend the class of known tight circulant tournaments.
Keywords: Circulant tournament, acyclic disconnection, vertex 3-colouring, 3-chromatic triangle, tight tournament
@article{DMGT_2000_20_1_a8,
     author = {Galeana-S\'anchez, Hortensia and Neumann-Lara, V{\'\i}ctor},
     title = {A class of tight circulant tournaments},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {109--128},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a8/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
AU  - Neumann-Lara, Víctor
TI  - A class of tight circulant tournaments
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 109
EP  - 128
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a8/
LA  - en
ID  - DMGT_2000_20_1_a8
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%A Neumann-Lara, Víctor
%T A class of tight circulant tournaments
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 109-128
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a8/
%G en
%F DMGT_2000_20_1_a8
Galeana-Sánchez, Hortensia; Neumann-Lara, Víctor. A class of tight circulant tournaments. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 109-128. http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a8/

[1] B. Abrego, J.L. Arocha, S. Fernández Merchant and V. Neumann-Lara, Tightness problems in the plane, Discrete Math. 194 (1999) 1-11, doi: 10.1016/S0012-365X(98)00031-4.

[2] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326, doi: 10.1002/jgt.3190160405.

[3] J.L. Arocha, J. Bracho and V. Neumann-Lara, Tight and untight triangulated surfaces, J. Combin. Theory (B) 63 (1995) 185-199, doi: 10.1006/jctb.1995.1015.

[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier Pub. Co., 1976).

[5] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197-198 (1999) 617-632.

[6] V. Neumann-Lara and M.A. Pizana, Externally loose k-dichromatic tournaments, in preparation.