Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2000_20_1_a8, author = {Galeana-S\'anchez, Hortensia and Neumann-Lara, V{\'\i}ctor}, title = {A class of tight circulant tournaments}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {109--128}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a8/} }
TY - JOUR AU - Galeana-Sánchez, Hortensia AU - Neumann-Lara, Víctor TI - A class of tight circulant tournaments JO - Discussiones Mathematicae. Graph Theory PY - 2000 SP - 109 EP - 128 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a8/ LA - en ID - DMGT_2000_20_1_a8 ER -
Galeana-Sánchez, Hortensia; Neumann-Lara, Víctor. A class of tight circulant tournaments. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 109-128. http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a8/
[1] B. Abrego, J.L. Arocha, S. Fernández Merchant and V. Neumann-Lara, Tightness problems in the plane, Discrete Math. 194 (1999) 1-11, doi: 10.1016/S0012-365X(98)00031-4.
[2] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326, doi: 10.1002/jgt.3190160405.
[3] J.L. Arocha, J. Bracho and V. Neumann-Lara, Tight and untight triangulated surfaces, J. Combin. Theory (B) 63 (1995) 185-199, doi: 10.1006/jctb.1995.1015.
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier Pub. Co., 1976).
[5] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197-198 (1999) 617-632.
[6] V. Neumann-Lara and M.A. Pizana, Externally loose k-dichromatic tournaments, in preparation.