@article{DMGT_2000_20_1_a8,
author = {Galeana-S\'anchez, Hortensia and Neumann-Lara, V{\'\i}ctor},
title = {A class of tight circulant tournaments},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {109--128},
year = {2000},
volume = {20},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a8/}
}
Galeana-Sánchez, Hortensia; Neumann-Lara, Víctor. A class of tight circulant tournaments. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 109-128. http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a8/
[1] B. Abrego, J.L. Arocha, S. Fernández Merchant and V. Neumann-Lara, Tightness problems in the plane, Discrete Math. 194 (1999) 1-11, doi: 10.1016/S0012-365X(98)00031-4.
[2] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326, doi: 10.1002/jgt.3190160405.
[3] J.L. Arocha, J. Bracho and V. Neumann-Lara, Tight and untight triangulated surfaces, J. Combin. Theory (B) 63 (1995) 185-199, doi: 10.1006/jctb.1995.1015.
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier Pub. Co., 1976).
[5] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197-198 (1999) 617-632.
[6] V. Neumann-Lara and M.A. Pizana, Externally loose k-dichromatic tournaments, in preparation.