About uniquely colorable mixed hypertrees
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 81-91.

Voir la notice de l'article provenant de la source Library of Science

A mixed hypergraph is a triple = (X,,) where X is the vertex set and each of , is a family of subsets of X, the -edges and -edges, respectively. A k-coloring of is a mapping c: X → [k] such that each -edge has two vertices with the same color and each -edge has two vertices with distinct colors. = (X,,) is called a mixed hypertree if there exists a tree T = (X,) such that every -edge and every -edge induces a subtree of T. A mixed hypergraph is called uniquely colorable if it has precisely one coloring apart from permutations of colors. We give the characterization of uniquely colorable mixed hypertrees.
Keywords: colorings of graphs and hypergraphs, mixed hypergraphs, unique colorability, trees, hypertrees, elimination ordering
@article{DMGT_2000_20_1_a5,
     author = {Niculitsa, Angela and Voloshin, Vitaly},
     title = {About uniquely colorable mixed hypertrees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {81--91},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a5/}
}
TY  - JOUR
AU  - Niculitsa, Angela
AU  - Voloshin, Vitaly
TI  - About uniquely colorable mixed hypertrees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 81
EP  - 91
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a5/
LA  - en
ID  - DMGT_2000_20_1_a5
ER  - 
%0 Journal Article
%A Niculitsa, Angela
%A Voloshin, Vitaly
%T About uniquely colorable mixed hypertrees
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 81-91
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a5/
%G en
%F DMGT_2000_20_1_a5
Niculitsa, Angela; Voloshin, Vitaly. About uniquely colorable mixed hypertrees. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 81-91. http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a5/

[1] C. Berge, Hypergraphs: combinatorics of finite sets (North Holland, 1989).

[2] C. Berge, Graphs and Hypergraphs (North Holland, 1973).

[3] K. Diao, P. Zhao and H. Zhou, About the upper chromatic number of a co-hypergraph, submitted.

[4] Zs. Tuza and V. Voloshin, Uncolorable mixed hypergraphs, Discrete Appl. Math. 99 (2000) 209-227, doi: 10.1016/S0166-218X(99)00134-1.

[5] Zs. Tuza, V. Voloshin and H. Zhou, Uniquely colorable mixed hypergraphs, submitted.

[6] V. Voloshin, The mixed hypergraphs, Computer Science J. Moldova, 1 (1993) 45-52.

[7] V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J. Combin. 11 (1995) 25-45.

[8] V. Voloshin and H. Zhou, Pseudo-chordal mixed hypergraphs, Discrete Math. 202 (1999) 239-248, doi: 10.1016/S0012-365X(98)00295-7.