Mean value for the matching and dominating polynomial
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 57-69.

Voir la notice de l'article provenant de la source Library of Science

The mean value of the matching polynomial is computed in the family of all labeled graphs with n vertices. We introduce the dominating polynomial of a graph whose coefficients enumerate the dominating sets for a graph and study some properties of the polynomial. The mean value of this polynomial is determined in a certain special family of bipartite digraphs.
Keywords: matching, matching polynomial, dominating set
@article{DMGT_2000_20_1_a3,
     author = {Arocha, Jorge and Llano, Bernardo},
     title = {Mean value for the matching and dominating polynomial},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {57--69},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a3/}
}
TY  - JOUR
AU  - Arocha, Jorge
AU  - Llano, Bernardo
TI  - Mean value for the matching and dominating polynomial
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 57
EP  - 69
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a3/
LA  - en
ID  - DMGT_2000_20_1_a3
ER  - 
%0 Journal Article
%A Arocha, Jorge
%A Llano, Bernardo
%T Mean value for the matching and dominating polynomial
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 57-69
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a3/
%G en
%F DMGT_2000_20_1_a3
Arocha, Jorge; Llano, Bernardo. Mean value for the matching and dominating polynomial. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a3/

[1] J.L. Arocha, Anticadenas en conjuntos ordenados, An. Inst. Mat. Univ. Nac. Autónoma México 27 (1987) 1-21.

[2] C. Berge, Graphs and Hypergraphs (North-Holland, London, 1973).

[3] E.J. Farrell, An introduction to matching polynomials, J. Combin. Theory (B) 27 (1979) 75-86, doi: 10.1016/0095-8956(79)90070-4.

[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness (Freeman, New York, 1979).

[5] C.D. Godsil and I. Gutman, On the theory of the matching polynomial, J. Graph Theory 5 (1981) 137-144, doi: 10.1002/jgt.3190050203.

[6] C.D. Godsil, Algebraic Combinatorics (Chapman and Hall, New York, 1993).

[7] O.J. Heilmann and E.H. Lieb, Monomers and dimers, Phys. Rev. Lett. 24 (1970) 1412-1414, doi: 10.1103/PhysRevLett.24.1412.

[8] O.J. Heilmann and E.H. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys. 25 (1972) 190-232, doi: 10.1007/BF01877590.

[9] M.A. Henning, O.R. Oellermann and H.C. Swart, The diversity of domination, Discrete Math. 161 (1996) 161-173, doi: 10.1016/0012-365X(95)00074-7.

[10] N.N. Lebedev, Special Functions and their Applications (Dover, New York, 1972).

[11] L. Lovász, Combinatorial Problems and Exercises (North-Holland, Amsterdam, 1979).

[12] O. Ore, Theory of Graphs (Amer. Math. Soc., Providence, 1962).