Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2000_20_1_a3, author = {Arocha, Jorge and Llano, Bernardo}, title = {Mean value for the matching and dominating polynomial}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {57--69}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a3/} }
Arocha, Jorge; Llano, Bernardo. Mean value for the matching and dominating polynomial. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a3/
[1] J.L. Arocha, Anticadenas en conjuntos ordenados, An. Inst. Mat. Univ. Nac. Autónoma México 27 (1987) 1-21.
[2] C. Berge, Graphs and Hypergraphs (North-Holland, London, 1973).
[3] E.J. Farrell, An introduction to matching polynomials, J. Combin. Theory (B) 27 (1979) 75-86, doi: 10.1016/0095-8956(79)90070-4.
[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness (Freeman, New York, 1979).
[5] C.D. Godsil and I. Gutman, On the theory of the matching polynomial, J. Graph Theory 5 (1981) 137-144, doi: 10.1002/jgt.3190050203.
[6] C.D. Godsil, Algebraic Combinatorics (Chapman and Hall, New York, 1993).
[7] O.J. Heilmann and E.H. Lieb, Monomers and dimers, Phys. Rev. Lett. 24 (1970) 1412-1414, doi: 10.1103/PhysRevLett.24.1412.
[8] O.J. Heilmann and E.H. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys. 25 (1972) 190-232, doi: 10.1007/BF01877590.
[9] M.A. Henning, O.R. Oellermann and H.C. Swart, The diversity of domination, Discrete Math. 161 (1996) 161-173, doi: 10.1016/0012-365X(95)00074-7.
[10] N.N. Lebedev, Special Functions and their Applications (Dover, New York, 1972).
[11] L. Lovász, Combinatorial Problems and Exercises (North-Holland, Amsterdam, 1979).
[12] O. Ore, Theory of Graphs (Amer. Math. Soc., Providence, 1962).