Some results concerning the ends of minimal cuts of simple graphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 139-142.

Voir la notice de l'article provenant de la source Library of Science

Let S be a cut of a simple connected graph G. If S has no proper subset that is a cut, we say S is a minimal cut of G. To a minimal cut S, a connected component of G-S is called a fragment. And a fragment with no proper subset that is a fragment is called an end. In the paper ends are characterized and it is proved that to a connected graph G = (V,E), the number of its ends Σ ≤ |V(G)|.
Keywords: cut, fragment, end, interference
@article{DMGT_2000_20_1_a10,
     author = {Jia, Xiaofeng},
     title = {Some results concerning the ends of minimal cuts of simple graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {139--142},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a10/}
}
TY  - JOUR
AU  - Jia, Xiaofeng
TI  - Some results concerning the ends of minimal cuts of simple graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 139
EP  - 142
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a10/
LA  - en
ID  - DMGT_2000_20_1_a10
ER  - 
%0 Journal Article
%A Jia, Xiaofeng
%T Some results concerning the ends of minimal cuts of simple graphs
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 139-142
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a10/
%G en
%F DMGT_2000_20_1_a10
Jia, Xiaofeng. Some results concerning the ends of minimal cuts of simple graphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 139-142. http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a10/

[1] B. Bollobas, Extremal Graph Theory (Academic Press, New York, 1978).

[2] H. Veldman, Non k-Critical Vertices in Graphs, Discrete Math. 44 (1983) 105-110, doi: 10.1016/0012-365X(83)90009-2.