On the completeness of decomposable properties of graphs
Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 229-236.

Voir la notice de l'article provenant de la source Library of Science

Let ₁,₂ be additive hereditary properties of graphs. A (₁,₂)-decomposition of a graph G is a partition of E(G) into sets E₁, E₂ such that induced subgraph G[E_i] has the property _i, i = 1,2. Let us define a property ₁⊕₂ by G: G has a (₁,₂)-decomposition.
Keywords: decomposition, hereditary property, completeness
@article{DMGT_1999_19_2_a8,
     author = {Ha{\l}uszczak, Mariusz and Vateha, Pavol},
     title = {On the completeness of decomposable properties of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {229--236},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a8/}
}
TY  - JOUR
AU  - Hałuszczak, Mariusz
AU  - Vateha, Pavol
TI  - On the completeness of decomposable properties of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1999
SP  - 229
EP  - 236
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a8/
LA  - en
ID  - DMGT_1999_19_2_a8
ER  - 
%0 Journal Article
%A Hałuszczak, Mariusz
%A Vateha, Pavol
%T On the completeness of decomposable properties of graphs
%J Discussiones Mathematicae. Graph Theory
%D 1999
%P 229-236
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a8/
%G en
%F DMGT_1999_19_2_a8
Hałuszczak, Mariusz; Vateha, Pavol. On the completeness of decomposable properties of graphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 229-236. http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a8/

[1] L.W. Beineke, Decompositions of complete graphs into forests, Magyar Tud. Akad. Mat. Kutato Int. Kozl. 9 (1964) 589-594.

[2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.

[3] M. Borowiecki and M. Hałuszczak, Decomposition of some classes of graphs, (manuscript).

[4] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.

[5] S.A. Burr, J.A. Roberts, On Ramsey numbers for stars, Utilitas Math. 4 (1973) 217-220

[6] G. Chartrand and L. Lesnak, Graphs and Digraphs (Wadsworth Brooks/Cole, Monterey, California, 1986).

[7] E.J. Cockayne, Colour classes for r-graphs, Canad. Math. Bull. 15 (1972) 349-354, doi: 10.4153/CMB-1972-063-2.

[8] P. Mihók Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki, Z. Skupień, eds., Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58.

[9] P. Mihók and G. Semanišin, Generalized Ramsey Theory and Decomposable Properties of Graphs, (manuscript).

[10] L. Volkmann, Fundamente der Graphentheorie (Springer, Wien, New York, 1996), doi: 10.1007/978-3-7091-9449-2.