Generalized ramsey theory and decomposable properties of graphs
Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 199-217

Voir la notice de l'article provenant de la source Library of Science

In this paper we translate Ramsey-type problems into the language of decomposable hereditary properties of graphs. We prove a distributive law for reducible and decomposable properties of graphs. Using it we establish some values of graph theoretical invariants of decomposable properties and show their correspondence to generalized Ramsey numbers.
Keywords: hereditary properties, additivity, reducibility, decomposability, Ramsey number, graph invariants
@article{DMGT_1999_19_2_a6,
     author = {Burr, Stefan and Jacobson, Michael and Mih\'ok, Peter and Semani\v{s}in, Gabriel},
     title = {Generalized ramsey theory and decomposable properties of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {199--217},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a6/}
}
TY  - JOUR
AU  - Burr, Stefan
AU  - Jacobson, Michael
AU  - Mihók, Peter
AU  - Semanišin, Gabriel
TI  - Generalized ramsey theory and decomposable properties of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1999
SP  - 199
EP  - 217
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a6/
LA  - en
ID  - DMGT_1999_19_2_a6
ER  - 
%0 Journal Article
%A Burr, Stefan
%A Jacobson, Michael
%A Mihók, Peter
%A Semanišin, Gabriel
%T Generalized ramsey theory and decomposable properties of graphs
%J Discussiones Mathematicae. Graph Theory
%D 1999
%P 199-217
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a6/
%G en
%F DMGT_1999_19_2_a6
Burr, Stefan; Jacobson, Michael; Mihók, Peter; Semanišin, Gabriel. Generalized ramsey theory and decomposable properties of graphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 199-217. http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a6/