Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1999_19_2_a6, author = {Burr, Stefan and Jacobson, Michael and Mih\'ok, Peter and Semani\v{s}in, Gabriel}, title = {Generalized ramsey theory and decomposable properties of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {199--217}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {1999}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a6/} }
TY - JOUR AU - Burr, Stefan AU - Jacobson, Michael AU - Mihók, Peter AU - Semanišin, Gabriel TI - Generalized ramsey theory and decomposable properties of graphs JO - Discussiones Mathematicae. Graph Theory PY - 1999 SP - 199 EP - 217 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a6/ LA - en ID - DMGT_1999_19_2_a6 ER -
%0 Journal Article %A Burr, Stefan %A Jacobson, Michael %A Mihók, Peter %A Semanišin, Gabriel %T Generalized ramsey theory and decomposable properties of graphs %J Discussiones Mathematicae. Graph Theory %D 1999 %P 199-217 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a6/ %G en %F DMGT_1999_19_2_a6
Burr, Stefan; Jacobson, Michael; Mihók, Peter; Semanišin, Gabriel. Generalized ramsey theory and decomposable properties of graphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 199-217. http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a6/
[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[2] M. Borowiecki and M. Hałuszczak, Decompositions of some classes of graphs (manuscript) 1998.
[3] S.A. Burr, A ramsey-theoretic result involving chromatic numbers, J. Graph Theory 4 (1980) 241-242, doi: 10.1002/jgt.3190040212.
[4] S.A. Burr and M.S. Jacobson, Arrow relations involving partition parameters of graphs (manuscript) 1982.
[5] S.A. Burr and M.S. Jacobson, On inequalities involving vertex-partition parameters of graphs, Congressus Numerantium 70 (1990) 159-170.
[6] R.L. Graham, M. Grötschel and L. Lovász, Handbook of combinatorics (Elsevier Science B.V., Amsterdam, 1995).
[7] T.R. Jensen and B. Toft, Graph colouring problems (Wiley-Interscience Publications, New York, 1995).
[8] T. Kövari, V.T. Sós and P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1969) 50-57.
[9] J. Kratochvíl, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discuss. Math. Graph Theory 17 (1997) 77-88, doi: 10.7151/dmgt.1040.
[10] R. Lick and A.T. White, k-degenerate graphs, Canad. J. Math. 22 (1970) 1082-1096; MR42#1715.
[11] L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar 1 (1966) 237-238; MR34#2442.
[12] P. Mihók, On graphs critical with respect to vertex partition numbers, Discrete Math. 37 (1981) 123-126, doi: 10.1016/0012-365X(81)90146-1.
[13] P. Mihók and G. Semanišin, On the chromatic number of reducible hereditary properties (submitted).
[14] M. Simonovits, Extremal graph theory, in: L.W. Beineke and R.J. Wilson, eds., Selected topics in graph theory vol. 2 (Academic Press, London, 1983) 161-200.