Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1999_19_2_a2, author = {Berger, Amelie and Broere, Izak}, title = {Minimal reducible bounds for hom-properties of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {143--158}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {1999}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a2/} }
Berger, Amelie; Broere, Izak. Minimal reducible bounds for hom-properties of graphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 143-158. http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a2/
[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of Hereditary Properties of Graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[2] P. Hell and J. Nesetril, The core of a graph, Discrete Math. 109 (1992) 117-126, doi: 10.1016/0012-365X(92)90282-K.
[3] J. Kratochví l and P. Mihók, Hom properties are uniquely factorisable into irreducible factors, to appear in Discrete Math.
[4] J. Kratochví l, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discussiones Mathematicae Graph Theory 17 (1997) 77-88, doi: 10.7151/dmgt.1040.
[5] J. Nesetril, Graph homomorphisms and their structure, in: Y. Alavi and A. Schwenk, eds., Graph Theory, Combinatorics and Applications: Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs 2 (1995) 825-832.
[6] J. Nesetril, V. Rödl, Partitions of Vertices, Comment. Math. Univ. Carolin. 17 (1976) 675-681.