Minimal reducible bounds for hom-properties of graphs
Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 143-158.

Voir la notice de l'article provenant de la source Library of Science

Let H be a fixed finite graph and let → H be a hom-property, i.e. the set of all graphs admitting a homomorphism into H. We extend the definition of → H to include certain infinite graphs H and then describe the minimal reducible bounds for → H in the lattice of additive hereditary properties and in the lattice of hereditary properties.
Keywords: graph homomorphisms, minimal reducible bounds, additive hereditary graph property
@article{DMGT_1999_19_2_a2,
     author = {Berger, Amelie and Broere, Izak},
     title = {Minimal reducible bounds for hom-properties of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {143--158},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a2/}
}
TY  - JOUR
AU  - Berger, Amelie
AU  - Broere, Izak
TI  - Minimal reducible bounds for hom-properties of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1999
SP  - 143
EP  - 158
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a2/
LA  - en
ID  - DMGT_1999_19_2_a2
ER  - 
%0 Journal Article
%A Berger, Amelie
%A Broere, Izak
%T Minimal reducible bounds for hom-properties of graphs
%J Discussiones Mathematicae. Graph Theory
%D 1999
%P 143-158
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a2/
%G en
%F DMGT_1999_19_2_a2
Berger, Amelie; Broere, Izak. Minimal reducible bounds for hom-properties of graphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 143-158. http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a2/

[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of Hereditary Properties of Graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.

[2] P. Hell and J. Nesetril, The core of a graph, Discrete Math. 109 (1992) 117-126, doi: 10.1016/0012-365X(92)90282-K.

[3] J. Kratochví l and P. Mihók, Hom properties are uniquely factorisable into irreducible factors, to appear in Discrete Math.

[4] J. Kratochví l, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discussiones Mathematicae Graph Theory 17 (1997) 77-88, doi: 10.7151/dmgt.1040.

[5] J. Nesetril, Graph homomorphisms and their structure, in: Y. Alavi and A. Schwenk, eds., Graph Theory, Combinatorics and Applications: Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs 2 (1995) 825-832.

[6] J. Nesetril, V. Rödl, Partitions of Vertices, Comment. Math. Univ. Carolin. 17 (1976) 675-681.