Problems on fully irregular digraphs
Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 253-255
Cet article a éte moissonné depuis la source Library of Science
@article{DMGT_1999_19_2_a13,
author = {Skupie\'n, Zdzis{\l}aw},
title = {Problems on fully irregular digraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {253--255},
year = {1999},
volume = {19},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a13/}
}
Skupień, Zdzisław. Problems on fully irregular digraphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 253-255. http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a13/
[1] Z. Dziechcińska-Halamoda, Z. Majcher, J. Michael, and Z. Skupień, Sets of degree pairs in the extremum fully irregular digraphs, in preparation.
[2] J. Górska, Z. Skupień, Z. Majcher, and J. Michael, A smallest fully irregular oriented graph containing a given diregular one, submitted.
[3] J. Górska and Z. Skupień, A smallest fully irregular digraph containing a given diregular one, in preparation.
[4] F. Harary and E.M. Palmer, Graphical Enumeration (Academic Press, New York, 1973).
[5] Z. Majcher, J. Michael, J. Górska, and Z. Skupień, The minimum size of fully irregular oriented graphs, in: Proc. Kazimierz Dolny '97 Conf., Discrete Math., to appear.