Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1999_19_2_a1, author = {Bielak, Halina}, title = {A note on the {Ramsey} number and the planar {Ramsey} number for {C₄} and complete graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {135--142}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {1999}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a1/} }
TY - JOUR AU - Bielak, Halina TI - A note on the Ramsey number and the planar Ramsey number for C₄ and complete graphs JO - Discussiones Mathematicae. Graph Theory PY - 1999 SP - 135 EP - 142 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a1/ LA - en ID - DMGT_1999_19_2_a1 ER -
Bielak, Halina. A note on the Ramsey number and the planar Ramsey number for C₄ and complete graphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 135-142. http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a1/
[1] H. Bielak, I. Gorgol, The Planar Ramsey Number for C₄ and K₅ is 13, to appear in Discrete Math.
[2] H. Bielak, Ramsey-Free Graphs of Order 17 for C₄ and K₆, submitted.
[3] J.A. Bondy, P. Erdős, Ramsey Numbers for Cycles in Graphs, J. Combin. Theory (B) 14 (1973) 46-54, doi: 10.1016/S0095-8956(73)80005-X.
[4] V. Chvátal, F. Harary, Generalized Ramsey Theory for Graphs, III. Small Off-Diagonal Numbers, Pacific J. Math. 41 (1972) 335-345.
[5] M. Clancy, Some Small Ramsey Numbers, J. Graph Theory 1 (1977) 89-91, doi: 10.1002/jgt.3190010117.
[6] P. Erdős, R.J. Faudree, C.C. Rousseau, R.H. Schelp, On Cycle-Complete Graph Ramsey Numbers, J. Graph Theory 2 (1978) 53-64, doi: 10.1002/jgt.3190020107.
[7] C.C. Rousseau, C.J. Jayawardene, The Ramsey number for a quadrilateral vs. a complete graph on six vertices, Congressus Numerantium 123 (1997) 97-108.
[8] R. Steinberg, C.A. Tovey, Planar Ramsey Number, J. Combin. Theory (B) 59 (1993) 288-296, doi: 10.1006/jctb.1993.1070.
[9] K. Walker, The Analog of Ramsey Numbers for Planar Graphs, Bull. London Math. Soc. 1 (1969) 187-190, doi: 10.1112/blms/1.2.187.