A note on the Ramsey number and the planar Ramsey number for C₄ and complete graphs
Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 135-142.

Voir la notice de l'article provenant de la source Library of Science

We give a lower bound for the Ramsey number and the planar Ramsey number for C₄ and complete graphs. We prove that the Ramsey number for C₄ and K₇ is 21 or 22. Moreover we prove that the planar Ramsey number for C₄ and K₆ is equal to 17.
Keywords: planar graph, Ramsey number
@article{DMGT_1999_19_2_a1,
     author = {Bielak, Halina},
     title = {A note on the {Ramsey} number and the planar {Ramsey} number for {C₄} and complete graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {135--142},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a1/}
}
TY  - JOUR
AU  - Bielak, Halina
TI  - A note on the Ramsey number and the planar Ramsey number for C₄ and complete graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1999
SP  - 135
EP  - 142
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a1/
LA  - en
ID  - DMGT_1999_19_2_a1
ER  - 
%0 Journal Article
%A Bielak, Halina
%T A note on the Ramsey number and the planar Ramsey number for C₄ and complete graphs
%J Discussiones Mathematicae. Graph Theory
%D 1999
%P 135-142
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a1/
%G en
%F DMGT_1999_19_2_a1
Bielak, Halina. A note on the Ramsey number and the planar Ramsey number for C₄ and complete graphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 135-142. http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a1/

[1] H. Bielak, I. Gorgol, The Planar Ramsey Number for C₄ and K₅ is 13, to appear in Discrete Math.

[2] H. Bielak, Ramsey-Free Graphs of Order 17 for C₄ and K₆, submitted.

[3] J.A. Bondy, P. Erdős, Ramsey Numbers for Cycles in Graphs, J. Combin. Theory (B) 14 (1973) 46-54, doi: 10.1016/S0095-8956(73)80005-X.

[4] V. Chvátal, F. Harary, Generalized Ramsey Theory for Graphs, III. Small Off-Diagonal Numbers, Pacific J. Math. 41 (1972) 335-345.

[5] M. Clancy, Some Small Ramsey Numbers, J. Graph Theory 1 (1977) 89-91, doi: 10.1002/jgt.3190010117.

[6] P. Erdős, R.J. Faudree, C.C. Rousseau, R.H. Schelp, On Cycle-Complete Graph Ramsey Numbers, J. Graph Theory 2 (1978) 53-64, doi: 10.1002/jgt.3190020107.

[7] C.C. Rousseau, C.J. Jayawardene, The Ramsey number for a quadrilateral vs. a complete graph on six vertices, Congressus Numerantium 123 (1997) 97-108.

[8] R. Steinberg, C.A. Tovey, Planar Ramsey Number, J. Combin. Theory (B) 59 (1993) 288-296, doi: 10.1006/jctb.1993.1070.

[9] K. Walker, The Analog of Ramsey Numbers for Planar Graphs, Bull. London Math. Soc. 1 (1969) 187-190, doi: 10.1112/blms/1.2.187.