Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1998_18_2_a5, author = {Galeana-S\'anchez, H. and Rinc\'on-Mej{\'\i}a, H.}, title = {A sufficient condition for the existence of k-kernels in digraphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {197--204}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {1998}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a5/} }
TY - JOUR AU - Galeana-Sánchez, H. AU - Rincón-Mejía, H. TI - A sufficient condition for the existence of k-kernels in digraphs JO - Discussiones Mathematicae. Graph Theory PY - 1998 SP - 197 EP - 204 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a5/ LA - en ID - DMGT_1998_18_2_a5 ER -
Galeana-Sánchez, H.; Rincón-Mejía, H. A sufficient condition for the existence of k-kernels in digraphs. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 197-204. http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a5/
[1] C. Berge, Graphs and hypergraphs (North-Holland, Amsterdan, 1973).
[2] P. Duchet, Graphes Noyau-Porfaits, Ann. Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4.
[3] P. Duchet, A sufficient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1987) 81-85, doi: 10.1002/jgt.3190110112.
[4] H. Galeana-Sánchez, On the existence of kernels and k-kernels in directed graphs, Discrete Math. 110 (1992) 251-255, doi: 10.1016/0012-365X(92)90713-P.
[5] M. Kwaśnik, The generalization of Richardson theorem, Discussiones Math. IV (1981) 11-14.
[6] M. Kwaśnik, On (k,l)-kernels of exclusive disjunction, cartesian sum and normal product of two directed graphs, Discussiones Math. V (1982) 29-34.