A sufficient condition for the existence of k-kernels in digraphs
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 197-204.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we prove the following sufficient condition for the existence of k-kernels in digraphs: Let D be a digraph whose asymmetrical part is strongly conneted and such that every directed triangle has at least two symmetrical arcs. If every directed cycle γ of D with l(γ) ≢ 0 (mod k), k ≥ 2 satisfies at least one of the following properties: (a) γ has two symmetrical arcs, (b) γ has four short chords. Then D has a k-kernel.
Keywords: digraph, kernel, k-kernel
@article{DMGT_1998_18_2_a5,
     author = {Galeana-S\'anchez, H. and Rinc\'on-Mej{\'\i}a, H.},
     title = {A sufficient condition for the existence of k-kernels in digraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {197--204},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a5/}
}
TY  - JOUR
AU  - Galeana-Sánchez, H.
AU  - Rincón-Mejía, H.
TI  - A sufficient condition for the existence of k-kernels in digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 197
EP  - 204
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a5/
LA  - en
ID  - DMGT_1998_18_2_a5
ER  - 
%0 Journal Article
%A Galeana-Sánchez, H.
%A Rincón-Mejía, H.
%T A sufficient condition for the existence of k-kernels in digraphs
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 197-204
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a5/
%G en
%F DMGT_1998_18_2_a5
Galeana-Sánchez, H.; Rincón-Mejía, H. A sufficient condition for the existence of k-kernels in digraphs. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 197-204. http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a5/

[1] C. Berge, Graphs and hypergraphs (North-Holland, Amsterdan, 1973).

[2] P. Duchet, Graphes Noyau-Porfaits, Ann. Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4.

[3] P. Duchet, A sufficient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1987) 81-85, doi: 10.1002/jgt.3190110112.

[4] H. Galeana-Sánchez, On the existence of kernels and k-kernels in directed graphs, Discrete Math. 110 (1992) 251-255, doi: 10.1016/0012-365X(92)90713-P.

[5] M. Kwaśnik, The generalization of Richardson theorem, Discussiones Math. IV (1981) 11-14.

[6] M. Kwaśnik, On (k,l)-kernels of exclusive disjunction, cartesian sum and normal product of two directed graphs, Discussiones Math. V (1982) 29-34.