A sufficient condition for the existence of k-kernels in digraphs
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 197-204
Voir la notice de l'article provenant de la source Library of Science
In this paper, we prove the following sufficient condition for the existence of k-kernels in digraphs: Let D be a digraph whose asymmetrical part is strongly conneted and such that every directed triangle has at least two symmetrical arcs. If every directed cycle γ of D with l(γ) ≢ 0 (mod k), k ≥ 2 satisfies at least one of the following properties: (a) γ has two symmetrical arcs, (b) γ has four short chords. Then D has a k-kernel.
Keywords:
digraph, kernel, k-kernel
@article{DMGT_1998_18_2_a5,
author = {Galeana-S\'anchez, H. and Rinc\'on-Mej{\'\i}a, H.},
title = {A sufficient condition for the existence of k-kernels in digraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {197--204},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a5/}
}
TY - JOUR AU - Galeana-Sánchez, H. AU - Rincón-Mejía, H. TI - A sufficient condition for the existence of k-kernels in digraphs JO - Discussiones Mathematicae. Graph Theory PY - 1998 SP - 197 EP - 204 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a5/ LA - en ID - DMGT_1998_18_2_a5 ER -
Galeana-Sánchez, H.; Rincón-Mejía, H. A sufficient condition for the existence of k-kernels in digraphs. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 197-204. http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a5/