New classes of critical kernel-imperfect digraphs
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 85-89.

Voir la notice de l'article provenant de la source Library of Science

A kernel of a digraph D is a subset N ⊆ V(D) which is both independent and absorbing. When every induced subdigraph of D has a kernel, the digraph D is said to be kernel-perfect. We say that D is a critical kernel-imperfect digraph if D does not have a kernel but every proper induced subdigraph of D does have at least one. Although many classes of critical kernel-imperfect-digraphs have been constructed, all of them are digraphs such that the block-cutpoint tree of its asymmetrical part is a path. The aim of the paper is to construct critical kernel-imperfect digraphs of a special structure, a general method is developed which permits to build critical kernel-imperfect-digraphs whose asymmetrical part has a prescribed block-cutpoint tree. Specially, any directed cactus (an asymmetrical digraph all of whose blocks are directed cycles) whose blocks are directed cycles of length at least 5 is the asymmetrical part of some critical kernel-imperfect-digraph.
Keywords: digraphs, kernel, kernel-perfect, critical kernel-imperfect, block-cutpoint tree
@article{DMGT_1998_18_1_a6,
     author = {Galeana-S\'anchez, Hortensia and Neumann-Lara, V.},
     title = {New classes of critical kernel-imperfect digraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {85--89},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a6/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
AU  - Neumann-Lara, V.
TI  - New classes of critical kernel-imperfect digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 85
EP  - 89
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a6/
LA  - en
ID  - DMGT_1998_18_1_a6
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%A Neumann-Lara, V.
%T New classes of critical kernel-imperfect digraphs
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 85-89
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a6/
%G en
%F DMGT_1998_18_1_a6
Galeana-Sánchez, Hortensia; Neumann-Lara, V. New classes of critical kernel-imperfect digraphs. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 85-89. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a6/

[1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).

[2] M. Blidia, P. Duchet, F. Maffray, On orientations of perfect graphs, in preparation.

[3] P. Duchet, Graphes Noyau-Parfaits, Annals Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4.

[4] H. Galeana-Sánchez, A new method to extend kernel-perfect graphs to kernel-perfect critical graphs, Discrete Math. 69 (1988) 207-209, doi: 10.1016/0012-365X(88)90022-2.

[5] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Dicrete Math. 59 (1986) 257-265, doi: 10.1016/0012-365X(86)90172-X.

[6] H. Galeana-Sánchez and V. Neumann-Lara, Extending kernel-perfect digraphs to kernel-perfect critical digraphs, Discrete Math. 94 (1991) 181-187, doi: 10.1016/0012-365X(91)90023-U.

[7] H. Galeana-Sánchez and V. Neumann-Lara, New extensions of kernel-perfect digraphs to critical kernel-imperfect digraphs, Graphs Combinatorics 10 (1994) 329-336, doi: 10.1007/BF02986683.

[8] F. Harary, Graph Theory (Addison-Wesley Publishing Company, New York, 1969).