Degree sequences of digraphs with highly irregular property
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 49-61.

Voir la notice de l'article provenant de la source Library of Science

A digraph such that for each its vertex, vertices of the out-neighbourhood have different in-degrees and vertices of the in-neighbourhood have different out-degrees, will be called an HI-digraph. In this paper, we give a characterization of sequences of pairs of out- and in-degrees of HI-digraphs.
Keywords: digraph, degree sequence, highly irregular property
@article{DMGT_1998_18_1_a3,
     author = {Majcher, Zofia and Michael, Jerzy},
     title = {Degree sequences of digraphs with highly irregular property},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {49--61},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a3/}
}
TY  - JOUR
AU  - Majcher, Zofia
AU  - Michael, Jerzy
TI  - Degree sequences of digraphs with highly irregular property
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 49
EP  - 61
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a3/
LA  - en
ID  - DMGT_1998_18_1_a3
ER  - 
%0 Journal Article
%A Majcher, Zofia
%A Michael, Jerzy
%T Degree sequences of digraphs with highly irregular property
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 49-61
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a3/
%G en
%F DMGT_1998_18_1_a3
Majcher, Zofia; Michael, Jerzy. Degree sequences of digraphs with highly irregular property. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 49-61. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a3/

[1] Y. Alavi, J. Liu, J. Wang, Highly irregular digraphs, Discrete Math. 111 (1993) 3-10, doi: 10.1016/0012-365X(93)90134-F.

[2] A.J. Hoffman, Some recent applications of the theory of linear inequalities to extremal combinatorial analysis, Proc. Symp. Appl. Math. 10 (1960) 317-327.

[3] Z. Majcher, Matrices representable by directed graphs, Archivum Mathematicum (Brno) 21 (4) (1985) 205-218.

[4] Z. Majcher, J. Michael, Degree sequences of highly irregular graphs, Discrete Math. 164 (1997) 225-236, doi: 10.1016/S0012-365X(97)84782-6.