Partition problems and kernels of graphs
Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 311-313
Cet article a éte moissonné depuis la source Library of Science
@article{DMGT_1997_17_2_a9,
author = {Broere, Izak and Hajnal, P\'eter and Mih\'ok, Peter},
title = {Partition problems and kernels of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {311--313},
year = {1997},
volume = {17},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a9/}
}
Broere, Izak; Hajnal, Péter; Mihók, Peter. Partition problems and kernels of graphs. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 311-313. http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a9/
[1] I. Broere, M. Dorfling J. Dunbar and M. Frick, A path(ological) partition problem (submitted).
[2] P. Hajnal, Graph partitions (in Hungarian) (Thesis, supervised by L. Lovász, J.A. University, Szeged, 1984).
[3] J.M. Laborde, C. Payan and N.H. Xuong, Independent sets and longest directed paths in digraphs, in: Graphs and other combinatorial topics (Prague, 1982), (Teubner-Texte Math., 59, 1983), 173-177.
[4] P. Mihók, Problem 4, p. 86, in: Graphs, Hypergraphs and Matroids (M. Borowiecki and Z. Skupień, eds., Zielona Góra 1985).
[5] J. Vronka, Vertex sets of graphs with prescribed properties (in Slovak) (Thesis, supervised by P. Mihók, P.J. Šafárik University, Košice, 1986).