Isomorphic components of Kronecker product of bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 301-309.

Voir la notice de l'article provenant de la source Library of Science

Weichsel (Proc. Amer. Math. Soc. 13 (1962) 47-52) proved that the Kronecker product of two connected bipartite graphs consists of two connected components. A condition on the factor graphs is presented which ensures that such components are isomorphic. It is demonstrated that several familiar and easily constructible graphs are amenable to that condition. A partial converse is proved for the above condition and it is conjectured that the converse is true in general.
Keywords: Kronecker product, bipartite graphs, graph isomorphism
@article{DMGT_1997_17_2_a8,
     author = {Jha, Pranava and Klav\v{z}ar, Sandi and Zmazek, Bla\v{z}},
     title = {Isomorphic components of {Kronecker} product of bipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {301--309},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a8/}
}
TY  - JOUR
AU  - Jha, Pranava
AU  - Klavžar, Sandi
AU  - Zmazek, Blaž
TI  - Isomorphic components of Kronecker product of bipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1997
SP  - 301
EP  - 309
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a8/
LA  - en
ID  - DMGT_1997_17_2_a8
ER  - 
%0 Journal Article
%A Jha, Pranava
%A Klavžar, Sandi
%A Zmazek, Blaž
%T Isomorphic components of Kronecker product of bipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 1997
%P 301-309
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a8/
%G en
%F DMGT_1997_17_2_a8
Jha, Pranava; Klavžar, Sandi; Zmazek, Blaž. Isomorphic components of Kronecker product of bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 301-309. http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a8/

[1] L. Babai, Automorphism Groups, Isomorphism, Reconstruction, Chapter 27 in Handbook of Combinatorics (R.L. Graham. M. Grötschel, L. Lovász, eds.) Elsevier, Amsterdam, (1995) 1447-1540.

[2] D. Greenwell and L. Lovász, Applications of product colouring, Acta Math. Acad. Sci. Hungar. 25 (1974) 335-340, doi: 10.1007/BF01886093.

[3] S. Hedetniemi, Homomorphisms of graphs and automata, University of Michigan, Technical Report 03105-44-T, (1966).

[4] P. Hell, An introduction to the category of graphs, Ann. New York Acad. Sci. 328 (1979) 120-136, doi: 10.1111/j.1749-6632.1979.tb17773.x.

[5] W. Imrich, Factorizing cardinal product graphs in polynomial time, Discrete Math., to appear.

[6] P.K. Jha, Decompositions of the Kronecker product of a cycle and a path into long cycles and long paths, Indian J. Pure Appl. Math. 23 (1992) 585-602.

[7] P.K. Jha, Hamiltonian decompositions of products of cycles, Indian J. Pure Appl. Math. 23 (1992) 723-729.

[8] P.K. Jha, N. Agnihotri and R. Kumar, Edge exchanges in Hamiltonian decompositions of Kronecker-product graphs, Comput. Math. Applic. 31 (1996) 11-19, doi: 10.1016/0898-1221(95)00189-1.

[9] F. Lalonde, Le probleme d'etoiles pour graphes est NP-complet, Discrete Math. 33 (1981) 271-280, doi: 10.1016/0012-365X(81)90271-5.

[10] R.H. Lamprey and B.H. Barnes, Product graphs and their applications, Modelling and Simulation, 5 (1974) 1119-1123 (Proc Fifth Annual Pittsburgh Conference, Instrument Society of America, Pittsburgh, PA, 1974).

[11] J. Neetil, Representations of graphs by means of products and their complexity, Lecture Notes in Comput. Sci. 118 (1981) 94-102, doi: 10.1007/3-540-10856-4₇6.

[12] E. Pesch, Minimal extensions of graphs to absolute retracts, J. Graph Theory 11 (1987) 585-598, doi: 10.1002/jgt.3190110416.

[13] V.G. Vizing, The Cartesian product of graphs, Vyc. Sis. 9 (1963) 30-43.

[14] P.M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47-52, doi: 10.1090/S0002-9939-1962-0133816-6.