Minimal vertex degree sum of a 3-path in plane maps
Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 279-284

Voir la notice de l'article provenant de la source Library of Science

Let wₖ be the minimum degree sum of a path on k vertices in a graph. We prove for normal plane maps that: (1) if w₂ = 6, then w₃ may be arbitrarily big, (2) if w₂ 6, then either w₃ ≤ 18 or there is a ≤ 15-vertex adjacent to two 3-vertices, and (3) if w₂ 7, then w₃ ≤ 17.
Keywords: planar graph, structure, degree, path, weight
@article{DMGT_1997_17_2_a6,
     author = {Borodin, O.},
     title = {Minimal vertex degree sum of a 3-path in plane maps},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {279--284},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a6/}
}
TY  - JOUR
AU  - Borodin, O.
TI  - Minimal vertex degree sum of a 3-path in plane maps
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1997
SP  - 279
EP  - 284
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a6/
LA  - en
ID  - DMGT_1997_17_2_a6
ER  - 
%0 Journal Article
%A Borodin, O.
%T Minimal vertex degree sum of a 3-path in plane maps
%J Discussiones Mathematicae. Graph Theory
%D 1997
%P 279-284
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a6/
%G en
%F DMGT_1997_17_2_a6
Borodin, O. Minimal vertex degree sum of a 3-path in plane maps. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 279-284. http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a6/