Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1997_17_2_a6, author = {Borodin, O.}, title = {Minimal vertex degree sum of a 3-path in plane maps}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {279--284}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a6/} }
Borodin, O. Minimal vertex degree sum of a 3-path in plane maps. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 279-284. http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a6/
[1] O.V. Borodin, Solution of Kotzig's and Grünbaum's problems on the separability of a cycle in plane graph, (in Russian), Matem. zametki 48 (6) (1989) 9-12.
[2] O.V. Borodin, Triangulated 3-polytopes without faces of low weight, submitted.
[3] H. Enomoto and K. Ota, Properties of 3-connected graphs, preprint (April 21, 1994).
[4] K. Ando, S. Iwasaki and A. Kaneko, Every 3-connected planar graph has a connected subgraph with small degree sum I, II (in Japanese), Annual Meeting of Mathematical Society of Japan, 1993.
[5] Ph. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225-236, doi: 10.2307/2370527.
[6] S. Jendrol', Paths with restricted degrees of their vertices in planar graphs, submitted.
[7] S. Jendrol', A structural property of 3-connected planar graphs, submitted.
[8] A. Kotzig, Contribution to the theory of Eulerian polyhedra, (in Russian), Mat. Čas. 5 (1955) 101-103.