Minimal vertex degree sum of a 3-path in plane maps
Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 279-284
Voir la notice de l'article provenant de la source Library of Science
Let wₖ be the minimum degree sum of a path on k vertices in a graph. We prove for normal plane maps that: (1) if w₂ = 6, then w₃ may be arbitrarily big, (2) if w₂ 6, then either w₃ ≤ 18 or there is a ≤ 15-vertex adjacent to two 3-vertices, and (3) if w₂ 7, then w₃ ≤ 17.
Keywords:
planar graph, structure, degree, path, weight
@article{DMGT_1997_17_2_a6,
author = {Borodin, O.},
title = {Minimal vertex degree sum of a 3-path in plane maps},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {279--284},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a6/}
}
Borodin, O. Minimal vertex degree sum of a 3-path in plane maps. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 279-284. http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a6/